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The problem of the interaction of harmonic waves with a thin elastic circular inclusion, which is located in an
elastic isotropic body (matrix), is solved. On both sides of the inclusion between it and the body (matrix), the conditions
of smooth contact are realized. The solution method is based on representing the displacements in the matrix through
discontinuous solutions of the Lamé equations for harmonic vibrations. This made it possible to reduce the problem
to Fredholm integral equations of the second kind with respect to functions associated with jumps in normal stress
and radial displacement to included ones. After the realization of the boundary conditions on the sides of the inclusion,
a system of singular integral equations is obtained to determine these jumps.
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Formulation of the problem. Modern
problems of dynamic fracture mechanics,
improvement of means of non-destructive testing
and flaw detection require further development and
improvement of methods for solving problems of
dynamic interaction of thin-walled inclusions with
the environment. An important case of inclusions is
a circular (disc-shaped) inclusion. This is primarily
due to the fact that thin disc-shaped reinforcements
are quite common in machine parts and building
structures. Thin inclusions are not only stress
concentrators, but are also used as fillers in
composites. When creating composite materials,
the matrix is often filled with coin-like reinforcing
elements of high rigidity. Therefore, they are the
inclusions of this shape that have always been
given a lot of attention, which requires the solution
of problems on the stress-strain state of bodies with
inhomogeneities such as thin inclusions.

When solving problems on the vibrations of
elastic bodies containing thin inclusions, it is often
assumed that the inclusion is absolutely rigid. This
assumption greatly facilitates the mathematical
solution, but on the other hand does not allow
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taking into account the influence of the elastic
properties of the inclusion on the stress
concentration near it. The fact that this influence
can be significant was shown in [1], where
oscillations of an unbounded body with strip
inclusions were considered. Oscillations of bodies
with inclusions having low rigidity were
considered in [2], [3]. In the present work, a method
based on the use of discontinuous solutions is used
to solve the problem of harmonic vibrations of a
body with an inclusion in the form of a circular
elastic plate.

Analysis of current research. An unlimited elastic
body (matrix) in which there is an inclusion in the form
of an elastic disk is considered, thickness h i radius
a(h<<a). If you enter a cylindrical coordinate system,

than in the area z=0 it occupies a circle
r<a, 0<0<2x.Theinclusions are under the action of

waves propagating in the matrix. Several cases of wave
action are considered. In the first case, a flat longitudinal
wave propagates in the medium, the front of which is
parallel to the plane of inclusion. This wave is given by
the potential and causes displacement in the matrix
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_ AOeIKIZ (1)
Ky
In the second case, the matrix propagates
cylindrical waves of expansion-compression, the
potential and displacement caused by these waves are
determined by the formulas [4]:

P (r’ Z)= %Jo(ﬁlr)eiyz ;

1

, ul= iﬁbeiw, u’ =0.

Do

= I};AO Jo(Blr)eiYZ;

The third case is the interaction with the inclusion of
a cylindrical shear wave with potential [4] and
causes in the moving medium:

By

0 u =—AJy(B:r)e™. (2)

u

\Vo(r,z):—zJO(Bzr)eiyz '
B2
Ug = BoJo(Bzr)eiyZ’ uy :_i}{}BO Jl(Bzr)eiyz- @)
2

In formulas (1) - (3) the notation is accepted:

Kk=cg, Bkz\/‘(i_}’zy k=12
K
Ay +2
cr=mr 2 b @)
P1 Py

where A,,p, — constant Lame matrix, p, — matrix

density. Multiplier e, which determines the
dependence on time here and further discarded.

The conditions of interaction of the inclusion with
the matrix on the basis of the small thickness of the
inclusion are formulated relative to its median area.
At smooth contact on inclusion normal pressure and
radial movement for which jumps designations are

entered will be discontinuous
<o, >=0,(r+0)-o,(r,+0)=,(r);

<u, >=u,(r+0)—u, (r,40)=x,(r). (5

Equality must be observed on both sides of the
inclusion

1, (r40)=0, u,(r,20)=wy(r),

0<r<a.

(6)

Here w,(r) — bend the displacement of the
median plane of inclusion, which is determined from
the equation of bending oscillations of round plates
[5] under conditions of axial symmetry

2
D[a_+1g

2
a? oy 8r} Wy — Mo Wy =7, (F) »

O0<r<a,

()

E,h*
121- v
- mass per unit area of inclusion. Equations (10) are
considered with free-edge conditions

M(a)=0; Q(a)=0,
where M(r) —bending moment and Q(r) — transverse
force included. From the last equations it follows that

where p = — cylindrical stiffness, m = hp,

W VoW | .
o> r or .
2
9 6v¥0+l% =0, O<r<a (8)
or\ or r or .

In addition, the function w,(r) should be limited
when r — 0.

The aim of the article is to solve the problem of
harmonic oscillations of an unbounded body with a
disc-shaped inclusion in the case of smooth contact
conditions. Previously, this problem was solved for a
completely rigid inclusion. [6].

Presenting main material. To solve the boundary
value problem (7), (8), the Green's function is first
constructed, which is determined by the formulas:

Gy(n,r)= 91(11, r)_
_i(Jo(qom)Gl(r)+ lo(don)G.(r).

o1

In the formula (9) g,(n,r) — the fundamental
function of equation (10) which is equal to:

9)

g,(n.r)= Ziql(gl(n, r)+g; (n,r);

7»Jo(klf)Jo(M)dn_
A tqf

[’e]

g (n.r)=]

0

For other functions included in (9) there are
equalities:

&)= ﬁ%l)(Ib‘l(qu)‘]o(qlr)Jr IO((:llr)j |
6.0~ g At 200

A (o) = 11(loy Ja (doy ) + %I hl(q01)H1(1)(q01) ;

A, (0o ) = @ (Glor JKs (0lor ) — I3 (dos ), (0lor )
A(Qm) = al(q01)|l(q01) + ‘Jl(q01 )hl(q01) ;
J; (%1 )

3y (0oy )= Jo(doy ) - (1 - v,

01
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i 1)
az(qm):%I(H((Jl)(qm)—(l_vo) ) :

Qo1

|

hy(0o1)= Io(Qo1)_(1—vo)M;
Qo1

K

h, (dos ) = Ko(Q01)+(1—VO)M;

oz
4 mOJZ_
&b = ' Qo =0a-

Using the Green's function, the solution of the
boundary value problem (7), (8) is given in the form

r):ja%n)Gl(n,r)dn, O<r<a. (10)
0

To determine the displacements and stresses in the
matrix, which are included in condition (5), they are
presented as

0 1 0 1
u,=u, +u,, T,=T,+7,. (11)

In these formulas u), <% - displacements and
stresses are caused in the medium by a propagating
wave. Additions ul, i, this displacement and stress

are caused by waves reflected from the inclusion. They
are represented by jumps (5) by means of a
discontinuous solution of the Lamé equations, which for
the case of oscillation of an elastic medium under
conditions of axial symmetry [7] has the form:

I”XL 1y (or, 2)dn + m )a.(n. 1, 2)dn

1

T%z = IT]X1

0

(11)921(11, r,z)dn+

+fnx4 )92.(n,r,2)dn . (12)

Then, after substituting (10), (11), (12) into
boundary conditions (6), we obtain a system of
integral equations with respect to unknown jumps.

(o).

1

_I.nh(n)lzzl(n,r)dn-i-‘:fnxl';( 24(71, )dn_

Fsl(n,f)dm?nxi( 34(11, )dTl—
Nl 0 (13)

a
:Jx_GlnrdT] u’(r,0), O<r<a.
0

Ul

ja' Xl(n)

When deriving the system (13) in the integrals that
contain, was the integration of parts and introduced
the notation:

)= < ()
n dn
Fu(n,r) = [ Bm szo(kn)Jl(M)dk,
0
Fou(n, RO“) le(xn)Jl(xr)dx ,
0
Fau(n.r)= ng Oq2 xJo(xn)Jo(xr)dx,
Fau(n,r)=— 3 I (=2 223, () J, (Ar)da,

2K5 9 qz(x)

Q2(7“):\/7‘2 —K5

In order to bring the system (13) to a form
convenient for numerical solution and selection from
the kernels of integral operators of the singular
component over it, it is necessary to make
transformations similar to those described in [8]. To
do this, you must enter into consideration of the

function Fl(x)} _ }n{xi(”)} Jo(An)dn.

T, (7‘) 0 x4(n)

Then the first and second equations of the resulting
system must be acted upon by operators

where g,(A) =32 -1,

ydy

dxg\/iff rpr,

X rf(r)
Rl N

Substitute the cosine representation by Fourier
integrals into the equations obtained after this

equation
{Tl(l)} _ ET{%(T)} cosidr.

T4(7‘) To (PA(T)

Functions ¢, (x) associated with jumping ¥, (n),
equations

D1
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o= T o.(0)=] Zllan, 0<e<a

9,(1)=0; 0,(r)=0, t>a.

As a result of these actions we find that functions
¢ (t), (k=14) are solutions of the following

system of integral equations

o= TSRy =2)- R (v )y +

+2_1n_}192<y><Rz(y—g)— Ry(y)dy = 1,(c)

1

_[gl(y)R3(

-1

1

o y—q)dy+2in}gz(y)R1(y—g)dy = (14)

1

[a(y)F(&. y)dy + f,(c).

-1

1

21

When deriving equations (14), notations were also
introduced

t=ay, x=a; ¢ lay)=wag,(y) (k=12

Ky

Ko =aK, —=d, &= (k=12). (15)

Ks Ks

The right parts of the system (14) depending on
the type of wave incident on the inclusion are
determined by the following formulas. When
interacting with a flat longitudinal wave

fl(ﬁ)ZO; fz(g):_ia'
If cylindrical waves of expansion-compression
propagate in the medium, then

fy (é) (1_ cos Exoby y);

2ia,

1
d, o, cos(Exgbyy)
f — 10 oM .
-(¢) b
In the case of action on the inclusion of a
cylindrical wave of transverse shear
B()(sz2 —1)(1—COSKOb2y)
fl(&): 2
b;
f, (Q) =By COS(Koﬁz Y) .

In the resulting system functions
R (x), (k=123) are determined by integrals

0

R, (X)=1, [By (u)cosuroxdu, (k=123), (16)
h _ ub(u) . B,(u)= Ro(u) :
where Bl)=mr Bl

uofu) .

Nk

b(u)=2u? ~1-2Ju? -1 Ju? -2 ;
Ry(U)=(2u? —1f —au?u? —1,Ju? &2 .
ofu)=u? —Ju? —1Ju? - |, u:Ki.

2

B3(u)=

You can see that function B,(u), which are

included in the integrals (16), are bounded by u — «
and therefore these integrals must be understood in a
generalized sense. To establish this value, we should
use formulas (3.753) with [9] and formulas for
differentiation of generalized functions [8]. As a
result, we find:

R =R, +iR,, k=123.

Ris(p)= 7 [2C11(p)5"(p)+2C:; (P (p)+
+Cus(P)(p) + Cua(p)sign(p)];
Ras(p)= 2 [4C1(p)5"(p) + 4C (p)6'(p) +
+Ca3(P)3(p)+ Cou(p)sign(p)];
Ras(p)= 2 [Coa(p)S"(p)+ Car (PI5'(P)+

+Ca3(P)S(p) + Csy(P)sign(p)];
Ro1(P) = o[- 281(p)~ S, (p) + 2275, (Ep) + 26%, (¢p));
Ry2(P)=1o(~45.(p)-4S,(p)+
+42%5,(p)+ 42%S, (p) ~ C, (p));
Ray(p)= 16(25, (15 P) — 26%5, (155 P) + £°5, (€0 )
where

1 1

2ClP)=Calp)= % Galiop)- JoExop):
2Cua(p)= 4 CanlP)= (31 (k0P) -3, (6P

C.s(p)=26A(p)-6£2A(Ep)+
+#3o(oP)—26%35(Ex,P):
C.5(p)=8(3A(p)-
~37A(Ep)~ Jo (ko P)+ €23 (€0 )
Cua(p) = o[- 22, (p)+ 26°A, (ep) +
+3,(1c0P) - 22%3,(Exp));
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C24(p) =—4x, (Az(p)_ E_,SAz(ép)— Jl(Ko p)+
+£%3;(Exop) - KOCl(p)) ;

2 (350P)~ J(ExoD))

Ko

C31(p): -

%(KoJl(Ko p)- i‘(o-]l((ta'(o p));

Ko

Csa(p)=6A (1o P)-6AE? (1o P)+ 2873, (Ex50 P
C34(p) =—KoA (Ko p)"‘ Ko‘isAz(EsKo p)"‘ K0533\]1(‘(0 p);

Csz(p) =

A(x)= ‘]O(X)_M; A (x)= Jl(x)_z‘ll_

X 2

L ) me)
T B e T T
(-1)" 1,2,

m:

Cm—Dn(zm+ 0’

2k+1

Cl(p)= l;)dk|‘<oz|

2k+2

C,(p)= éck (ic02)

I
T (K)P2% (2k +1)
_ (-)"
T ok 2) (k1) a
8(p)- delta Dirac function.
FE )= 220 @l )0 (@(c-v)-
—2(B,(y)cosat + B, (y)chaet )]
where

D (ol2])= (Infz| (o 2]))+ (1~ cos || i 2]) -
—sin (q0|z|{si(qo|z|)+ gj :
D* (q0|z|)= (1— chq0|z|)ln|z| - ch(q0|z|XC +In q0|z|)—

-l o5,

Functions B, (y), k =1,2 are due to the action on

the Green's function (10) and their derivatives by
the differential operator and the calculation of the

), 30

introduction of
of the

the
subtraction

corresponding integrals,
notation (15) and the
discontinuous component.

After substituting (17) into the system (14) and
calculating the integrals with - function and its
derivatives, we obtain a system of integral
equations, the matrix record of which has the form

AG(Y)+ - [Qle yI5(eHE +

+AG(O +—JQO (CB(Ehe=F(y).  (8)
Vectors G(y), F(y) and matrices A, A,, Q, are

by formulas

5 1
G:(gl} F:(fl} A= 22 i
9> f, 148" &
4 2
a <[ ~b-e?)) Q:(—Ql —sz;
0 0 ’ -Q -Q

Q
0

Q
0

ar(® )

Q(6)=Qu(6)+iQp(t) 1=12
Qu(p) = sign(p)<

x (-2 (p) + 267 Ay Ep)+ 31 (1coP) - 26731 (&)
Qui(p)= = sign(p)<

x| (p)- %A, (&p) - 34 (0 P) + £33 (&6 )+ Gy ()

Quu(p)= 52 sign(p)- 4o (p)+ £y €9) + £ o P):

lj=12.,

)

FEy).

Qlj(p)= Rij (p),
-Q;

(@
Q_[— -Q;

)
P& Y)=Qs(c-y)-

Because, det(A):%io, then you can always
find the inverse matrix for matrix A
-2 —af-¢)

-1 _
A _[1+<:2 — 22 ]

Multiply both parts of the system (18) by the
matrix A™' and enter the notation:

R=A"Q; R°=A"Q,; D’=A7'A;
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As a result, the system (18) is transformed into
a form

(5)+ 5 R~ )6(e)e+

L iRe)e()e

2n

+D°G(0)+

=H(y),-1<y<1 (19)

Thus, system (19) is a system of Fredholm
integral equations of the second kind, which allows
effective approximate solutions.

The approximate solution of system (19) will be
found in the form of an interpolation polynomial

0 P.y) .
G(y)= mzlG"‘(y Yo Pr (Vi)

on~{sion)
:

n(y) — polynomial Legendre, y,, (m=212..n)—
his radical.

If we now use the Darboux-Christophel identity
for Legendre polynomials [10], [11],

R 1 g POP)
y_ym n+1lz(:)( J+ ) Pn+1(ym)
then we find that
G(0)= ZAnbm o
by, = %n_;(21+1) ()P (Y ):

= 2 .
- y2)[Pa(y. )P

We approximate the integrals in system (19) by
the Gaussian quadrature formula [12] and use (20).
As a result, we obtain the following system of linear
algebraic  equations for the  approximate
determination of the values of unknown functions in
interpolation nodes:

G, +2_1nm%A’“ [R(y,

(20)

Y, )+ R%(y, )+ D0 JG,, =

Fi=Fly;)

To estimate the stress concentration in the
matrix near the inclusion is used, as in [8], [13]
stress intensity coefficients (CIN), equal to:

K, = lim varn(r), K= im Yaro,(ro).

r—a-0 r—a+0

j=12.m (21)

After performing the boundary transition, we
find that

K, =m+2aN;,

T

j=13;

&22 91(1)_ (1_ ‘:2)92(1)

Using (22), the dimensionless values of CIN are
expressed through the solution of system (21) by

(22)

formulas
N, =§—;; ; =2—1n(<g2csl —ol-g2)s, )
o= m%Cmg i (V)
Crn = (L~ Y )Py )™ (23)

Consider the results of a numerical study on the
frequency dependence of CIN. First, it was found
that the rigidity of the inclusion on the stress
concentration around it. For this purpose, it was
assumed that the inclusion and the matrix have the
same density and Poisson's ratios
(p=1v,=v,=0,25), the results of these studies

can be seenin fig.1 a, b. The curves in these figures
correspond to the specified value of the ratio of the
modulus of elasticity of the matrix and the

L and that a flat longitudinal wave
0

(1) interacts with the inclusion. Corresponding
curves g, =107 on the fig. 1 i ¢, =10™ on the fig.

1b completely coincide with similar constructions
for absolutely rigid inclusion [6]. The behavior of
both coefficients is complicated by a decrease in
the stiffness of the inclusion and becomes complex
with a large number of highs and lows.

Value |Ny| for elastic inclusions, as a rule,

exceed the corresponding values for absolutely
rigid inclusions and this excess can reach several
times. Value |N;| for elastic inclusion, as a rule, are

smaller than those calculated for absolutely rigid
inclusion. Calculations of CINs for inclusions and
matrices from real materials were also performed.
The results of these calculations illustrate the
graphs in the fig. 1c-h. Solid curves are constructed
taking into account the elasticity of the inclusion,
and dotted according to the assumption that the
inclusion is absolutely rigid. The inclusion was
considered steel, and three types of materials were
assumed for the matrix. Curves 1 are constructed
for the concrete matrix, curves 2 are constructed

inclusion e,
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under the assumption that the matrix material is
lead, and curve 3 in fig. 1 ¢ corresponds to a matrix
of copper. The graphs in fig. 1c and fig. 1d show
the change in CIN depending on the wave number
when interacting with the inclusion of a flat
longitudinal wave. The results of the calculations

NENEV.

0.24

0.12 >//\\
10

00 15 30 45 K,
a

Ny

0.30

0.15

IN,|

/\

5.0

25

0.0 1.5

are shown in fig. le and fig.1f correspond to the
case of the action on the inclusion of a longitudinal
cylindrical wave, and those graphs that in fig. 1g
and fig. 1h are constructed when a transverse
cylindrical wave acts on the inclusion.

N )
Nl 10%/
0.28
0.14
0.001 %
_‘é:”// 0.5

00 15 30 45 K,

b
IN| 1
;
;
0.90 ;
.’.
RS
0.45 I
oA
- /_:-Q\"
i e S P Y
00 15 3.0 45 K,
d

IN;|
1.8 z

0.9 /

0.0 1.5 3.0 4.5 K

INy|

2.8

1.4

0.0

Fig. 1. The results of a numerical study of CIN (N1 - for normal voltage, N3 - for radial
movement) under conditions of smooth contact from the dimensionless wave number around the
elastic inclusion in the isotropic matrix: a, b - action of a flat longitudinal wave; ¢, d - action of a flat

longitudinal wave for real materials; e, f - action of a longitudinal cylindrical wave; g, h - the action of a
transverse cylindrical wave
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account the stiffness of the inclusion also

Conclusions and prospects for further research o
prosp significantly changes the dependence of CIN on the

The analysis of research results indicates: 1. In the ber. It b | ith
case of real materials, taking into account the WaV€ NUMDET. Il HECOMES more complex with many

elasticity of inclusions significantly affects the value highs and IOW.S' Moreover, the maximum values_ of
of CIN. The values of CIN obfained taking into CIN several times may exceed the corresponding

account the elasticity for some materials may exceed, ~Values for absolutely rigid inclusions.

and for some be much lower than those corresponding When calcu_la_tlng the strength Of. machine parts
to the absolutely rigid inclusion. 2. Taking into and structures, it is necessary to take into account the

elasticity of inclusions.
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JI. B. BaxoHina, H. B. [lorpuBaesa, O. C. CazgoBuii. TOHKe Npy>KHe Kpyrose BKJIIOYEeHHS
y 30Hi Ail rapMOHIYHHUX KOJIMBAaHb HEOOMEXKEHOr0 Tijia 32 YMOB IJIaiKOr0 KOHTAKTY

Pose'sizaHa sicecumempuyHa 3a0a4d npo 83aeMo0it0 2APMOHIYHUX X8UAb 3 MOHKUM NPYHCHUM KpPY208UM
BK/IOUEHHSIM, sIKe pO3mAauw08aHe 8 NPYHCHOMY i30mponHomy miai (Mampuyi). Ha 060x cmopoHax 8KAYEeHHs MidC
HUM ma mijiom (mMampuyeio) peanizosaHi ymosu 21adko2o0 koHmakmy. Memod po3e’sa3aHHs1 6a3yembubcsl HA NOOaHHI
nepemiujeHb 8 Mampuyi yepes po3pusHi po3e’sa3ku pigHsAHb Jlame 019 2apMOHIYHUX KO1UBAHb. L]e do3eonus10 36ecmu
3adavy 0o iHmezpaabHux pieHAHb Ppedzosbma Opy2020 pody 8iOHOCHO (BYHKYIl, 38°s3aHUX 31 cmpubkamu
HOPMA/bHO20 HANpyxceHHs i padiasibHo2o nepemiujeHHs1 HA ekAoveHHl. Ilicasi peasizayii epaHu4HUX yMo08 Ha
CMOPOHAX BKAIOYEHHS 0151 BUSHAYEHHS YUX CMPUOKI8 OMPUMAHO CUCMeMy CUH2YASIPHUX [HMe2panbHUX PIGHSIHb.

Kawuoei caoea: npyxcHe 8K/AKWYEHHS, YUAITHOPUYHI Xx8uili, mampuys, KoegdiyieHm iHmeHcusHocmi
HanpyiceHb.

JI. B. BaxonnHa, H.B.IlotpuBaeBa, A.C.CagoBoii. ToHkKoe ymnpyroe Kpyrosoe
BKJ/IDYEHHUE B 30HE [ eliCTBUS rApMOHHYECKUX K0JIe6aHMil HeOrpaHUYEHHOT0 TeJia NP
rJIaAKoOM KOHTaKTe

Pewena 3adava o e3aumodelicmeuu 2apMOHUYECKUX 80/H C MOHKUM YNpyaum Kpy208biM GK/AI0YEHUEM,
KOmMopoe pacno/0}eHo 8 ynpy2om u3omponHom mese (mampuye). Ha o6eux cmopoHax 8KAYEHUS] Mexcdy HUM U
mesiom (Mampuyeli) pea1u308aHbl ycA08Usl 21A0K020 KOHmMakma. Memod peweHusl 6a3upyemcsi Ha hpedcmas.ieHuu
nepemeujeHuli 8 mampuye vepe3 paspbléHble peweHusl ypasHeHull Jlame 048 2apMOHUYeCKUX Kosie6aHutl. Imo

95



BicHuk azpapHoi Hayku [IpuuopHomop’s. - 2020. - Bun. 4 [ DOI: 10.31521/2313-092X/2020-4(108)

no0380.1u/0 ceecmu 3adavy K UHmMezpa/abHbiM ypasHeHusm Ppedzosbma emopozo poda omHocumenbHo GyHKYU,
CB5130HHbIX CO CKAYKAMU HOPMA/AbHO20 HANPSXCEHUSl U padua/ibHO20 hepemeujeHusi Ha ekawveHuu. [locae
peaausayuu epaHu4HbIX YCA08Ull HA CMOPOHAX 8KAKYeHUs 0151 onpedeseHust 3Imux cKa4ko8 noJyyvyeHa cucmema
CUH2YASIPHbIX UHMEZPAAbHbIX YPAGHEHU.

Knawuesvle caosa: ynpyzoe ekawdeHue, YUAUHOpUHECKUe GOJIHbI, Mampuya, KodgdgpuyueHm
UHMEHCUBHOCMU HANPSIHCEHULL
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