Issue 2 (102), 2019

Cover sheet
Content

ECONOMICAL SCIENCES

I. Cherven, S. Pavliuk. Reform of decentralization and development of rural regions in Ukraine 4
N. Potryvaieva, I. Pelypkanych. Prospects for updating the material and technical base of agro-enterprises on the basis of innovations 12
Yu. A. Kormishkin, M. P. Minyailo. The role of urban united territorial communities in the development of rural areas 18

AGRICULTURAL SCIENCES

А. Goychuk, V. Drozda, І. Kulbanska, М. Shvets. Phytopathogenic bacteria in the pathology of forest trees of Polyssya and forest-steppe of Ukraine 28
M. Fedorchuk, V. Nagirny. Influence of the terms of sowing different varieties of winter barley and trace elements involved on photosynthetic performance 34
R. Vozhehova, Ya. Belov. Improving the cultivation of corn hybrids under irrigation in the South of Ukraine 41
P. Trofymenko, V. Zhuravlev, N. Trofymenko, S. Veremeyenko. Modeling and agroecological substantiation of a recovery period for soils to ensure their sustainable functioning
A. Chernova, O. Kovalenko, M. Korkhova, L. Antipova. Ways to increase the survival rate of sweet sorghum plants in the conditions of Southern Step in Ukraine 56
A. Svyrydov, A. Svyrydov. Grain sorghum young growth formation depending on weather conditions of the Eastern Forest-Steppe 62
D. Sadova. Digital relief model as a spatial basis for mapping soils using remote methods 69
S. Kramarenko, A. Kramarenko, S. Lugovoy, A. Lykhach, V. Lykhach. Principal Component Analysis (PCA) of the reproductive traits in the Large White sows 75
T. Pidpala, Yu. Matashnyuk. Highly Productive Cows of Holstein Breed Under Intensive Technology 82
О. Karatieieva. Analysis of the causes of disposal and the period of economic use of the Red Steppe breed cows 89

TECHNICAL SCIENCES

V. Havrysh, V. Hruban, А. Kalinichenko. Feasibility of controlling the thermal regime of the transmission of agricultural machines in conditions of Ukraine 96

Feasibility of controlling the thermal regime of the transmission of agricultural machines in conditions of Ukraine

UDC 662.99

DOI: 10.31521/2313-092X/2019-2(102)-14

V. Havrysh
V. Hruban
А. Kalinichenko

 

        During the heating of the tractor gearbox oil, there is a decrease in the efficiency, which leads to an increase in fuel consumption. This is observed at any time of the year. The efficiency of a gearbox as a function of the ambient temperature and the operating time has been obtained. This allows you to predict the effectiveness of the work of the tractor. Various methods to improve transmission performance were analyzed. The article analyzes the parameters of the exhaust gas of a tractor diesel engine. It was proved that one of the effective methods for temperature control is to use of an exhaust gas heat recovery system. It was shown that the capacity of the exhaust gas recovery system is sufficient to ensure the warming up of transmission oil to the optimum parameters. It is determined that the use of the proposed system may reduce fuel consumption by 155 UAH per shift (for tractors with drawbar pull of three tons). The direction of subsequent research is to determine the specific design parameters of the proposed system to ensure the optimum temperature of transmission oil.

       Keywords: tractor, gearbox, oil, recovery, economy.

Reference

  1. Krohta, G.M. (1995). Povyshenie effektivnosti ekspluatacii energonasyshennyh traktorov v usloviyah Zapadnoj Sibiri. (Candidate’s thesis) Novosibirsk [in Russian].
  2. Negovora, A.V., Razyapov, M.M., Zakiev, M.G. & Sherstnev N.A. (2015) Izuchenie vliyaniya nizkih temperatur na korobku peredach avtomobilya KAMAZ ZF 16S 1820. Proceedings of the Conference Title: Avtomobil dlya Sibiri Krajnego severa: konstrukciya, ekspluataciya, ekonomika. Irkutsk, рр. 273-278 [in Russian].
  3. Pankratov, G.P. (1995). Sbornik zadach po teplotehnike. Moskva [in Russian].
  4. Razogrev i podogrev dvigatelya gorelkami infrakrasnogo izlucheniya. Ustrojstvo Avtomobilya. Retrieved from : http://www.ustroistvo-avtomobilya.ru/dvigatel/razogrev-i-podogrev-dvigatelya gorelkamiinfrakrasnogoizlucheniya [in Russian].
  5. Meteorologicheskij arhiv Lvov. (2017). Retrieved from : https://www.meteoblue.com/ru/погода/прогноз/archive/Львов_Украина_702550?fcstlength=1m&year=2017&month=1 [in Russian].
  6. Meteorologicheskij arhiv Nikolaev. (2017). Retrieved from : https://www.meteoblue.com/ru/погода/прогноз/archive/Николаев_Украина_700569?fcstlength=1m&year=2017&month=1 [in Russian].
  7. Meteorologicheskij arhiv Harkov. (2017). Retrieved from : https://www.meteoblue.com/ru/погода/прогноз/archive/Харьков_Украина_706483?fcstlength=1m&year=2017&month=1 [in Russian].
  8. Fedin, K.I. (2012). Innovacionnaya tehnologiya sozdaniya gazovyh porshnevyh dvigatelej s iskrovym zazhiganiem. Innovacionnye Resursy Rossii. 2 [in Russian].
  9. Ivannikov, A.B. (2017). Vtorichnoe ispolzovanie teplovyhlopnyh gazov dvigatelya dlya povysheniya effektivnosti funkcionirovaniya agregatov na primere korobki peredach traktora. Novosibirsk, 2017 [in Russian].
  10. Jadhao, J.S. & Thombare, D.G. (2013). Reviewon Exhaust Gas Heat Recoveryfor I.C. Int. J. Eng. Innov. Technol. Vol. 2 [in Russian].
  11. Nadaf, S.L., & Gangavati, P.B. (2014). A review on waste heat recovery and utilization from dieselengines. Int. J. Eng. Technol.
  12. Ibrahim T.M., Syahir, A.Z., Zulkifli, N.W.M., Masjuki, H.H. & Osman, A. (2017). Enhancing vehicle’s engine warm upusing integrated mechanical approach. IOP Conf. Ser. Mater. Sci.
  13. Kalinichenko, A., Havrysh, V. & Hruban, V. (2018). Heat Recovery Systems for Agricultural Vehicles: Utilization Ways and Their Efficiency. Agriculture. 8, doi:10.3390/agriculture8120199.
  14. Kauranen, P., Heikkinen, J., Laurikko, J. & Seppala, A. (2018). Heatand Cold Accumulator in Vehicles. Retrieved from : https://www.motiva.fi/files/3507/Heat_and_cold_accumulators_in_vehiclespdf.
  15. Heat Accumulator. (2018). Retrieved from : http://avtomasta.ru/elektrooborudovanie/teplovoj-akkumulyatorgrelka-dlya-motora.html

Analysis of the causes of disposal and the period of economic use of the Red Steppe breed cows

UDC  636.082.22: 636.2.034

DOI: 10.31521/2313-092X/2019-2(102)-13

О. Karatieieva

 

       When improving breeding herds and developing dairy cattle breeding programs, an important factor that must take into account the causes of animal disposal. Factors contributing to the occurrence of diseases in highly productive cows and their premature culling are the effects of the «transport», «traumatic», «alimentary» and «technological» stresses. What in the body of cows and heifers leads to a decrease in their resistance against the occurrence of various diseases. As well as factors contributing to the suppression of the immune system, impaired liver, kidney, digestive and respiratory systems are a number of environmental factors – the imbalance of diets with protein, carbohydrates, macro and microelements, vitamins. All this causes premature depletion, intoxication, violation of body functions, the occurrence of infectious diseases, culling or death of animals.
       Intensification of dairy cattle breeding and breeding improvement of the herds in order to increase the productive qualities of animals leads to a significant reduction in the life of the cows. As a result, the average period of use of cows on dairy farms is limited to only 3-4 lactations.Considering that cattle has a biological cycle of development and reproduction that is long in time and complex in terms of physiological and economic structure, the problem of the duration of productive use of cows is particularly important in the intensification of milk production.To date, the issue of the early retirement of cows and the duration of their productive longevity remains unresolved. Recently, the duration of economic use has been reduced due to the culling of cows before they reach the age of the highest milk productivity.Given the problem of productive longevity of cows, the goal was to investigate the duration of economic use, lifelong productivity and their factorial conditionality in a herd of red steppe cattle of different lines.
       We have found that it is not by accident that cows of different ages leave. That is, among uneven-aged animals, the cases of their rejection were associated with various reasons and had a certain dependence on age, confirmed by the calculation of the criterion χ2. The frequency of age-related retirement is described by a polynomial curve of degree 2 and adequately describes the culling of cows, namely, to 4 lactations, the culling intensity is low, and then with age the intensity of cows leaving sharply increases. Moreover, a certain relationship was established between the age of animals and the reasons for their culling. On the graph, this interdependence is in the form of a wave that oscillates around experimental points. And with an increase in the order of the polynomial, the number of maximum and minimum values of the approximating curve increases.
        It has been established that the animals of the Cirrus line have the highest milk yield for the first lactation and an intermediate one for the third, and retain the constancy of milk productivity in the following years. The fat content in the milk of these cows is expectedly worse among peers, but the intergroup difference in this indicator is insignificant.However, the active culling of the representatives of the line is noted at the age of eight lactations and in a smaller number than in other groups, therefore the average number of calvings during their life is much more and amounts to 8.56.Analyzing the Arik line, in the first lactation, the lowest milk yield is noted, and by the fat content, on the contrary, the highest, but already for the third lactation, the milk yield significantly increases, the fat content in milk is at the average level in the sample. However, the representatives of this line are characterized by unstable milk productivity, their advantage over other groups of cows included in the study is not observed in subsequent years. According to the results of grading, they are subject to active retirement throughout their productive lives, especially since the seventh lactation.Comparing the efficiency of lifelong use of cows of different lines, we can conclude that with an increase in the period of economic use, the productive life of animals and, consequently, lifelong milk production is extended. Thus, during the study, the daughters of the Cirrus line did not differ in the high productivity of the compared groups of their peers, however, they kept it at an average level during the entire period of productive use, due to which they moderately exhausted their bodies and dropped out later than their counterparts. This allowed them to have the highest lifetime productivity.
        Thus, the culling according to the rating data is the main reason for the departure of the bulk of the representatives of the Arica line, whereas in the Cirrus line, therefore, the smallest number of cows among the studied groups is eliminated. But the threat to these animals is a high level of injury. The number of animals retired due to the disease is almost equal in all experimental groups and is explained by the deficiencies of maintenance and care. It is no coincidence that retirement of cows of different ages takes place, that is, a certain dependence of the causes of retirement on age is established: at different age periods, cows drop out of certain causes. The duration of the economic use of cows has a certain dependence on their productive characteristics, namely, more productive animals deplete the resources of their body more quickly and, as a result, are subject to rejection faster. On the other hand, animals with a uniform, although slightly lower, manifestation of dairy productivity during life longer retain the ability for productive use and this is more advantageous from an economic point of view.

          Keywords: retirement of cows, reasons for culling, productive longevity, duration of economic use, lifetime performance, coefficient of utilization of cows.

 

References

  1. Babik, N. P. (2017). Vply`v genoty`povy`x chy`nny`kiv na try`valist` i efekty`vnist` dovichnogo vy`kory`stannya koriv golshty`ns`koyi porody`. Rozvedennya i genety`ka tvary`n, (53), 61-69.
  2. Vy`sokos, M. P., & Tyupina, N. V. (2013). Try`valist` produkty`vnogo vy`kory`stannya koriv golshty`ns`koyi porody` yevropejs`koyi selekciyi za rizny`x texnologij utry`mannya v Stepu Ukrayiny`. Visny`k Dnipropetrovs`kogo derzhavnogo agrarnogo universy`tetu, (2), 84-87.
  3. Dobrovol`s`ky`j, B. (2003). Pidvy`shhennya molochnoyi produkty`vnosti koriv zavdyaky` dovgolittyu. Tvary`nny`cztvo Ukrayiny`, (6), 16-18.
  4. Karatіeіeva, O. I., & Bezbabna, A. V. (2014). Efekty`vnist` try`valosti gospodars`kogo vy`kory`stannya koriv golshty`ns`koyi porody`. Naukovy`j visny`k Nacional`nogo universy`tetu bioresursiv i pry`rodokory`stuvannya Ukrayiny`. Seriya: Texnologiya vy`robny`cztva i pererobky` produkciyi tvary`nny`cztva, (202), 175-178.
  5. Krasota, V. F., Dzhaparidze, T. G., & Kostomahin, N. M. (2005). Razvedenie sel’skohozjajstvennyh zhivotnyh. Obshhestvo s ogranichennoj otvetstvennost’ju” Izdatel’stvo KolosS”.
  6. Lakin, G.F. (1990). Biometrics. M .: Higher. Sc., 352 s.
  7. Peshuk, L. (2002). Prodovzhy`ty` strok produkty`vnogo dovgolittya molochny`x koriv. Propozy`ciya. 10. 72-73.
  8. Pidpala, T. V., & Zajcev, Ye. M. (2018). Produkty`vne dovgolittya molochnoyi xudoby` golshty`ns`koyi porody` riznoyi selekciyi. Visny`k agrarnoyi nauky` Pry`chornomor’ya, 3 (99), 40-45. doi: 10.31521/2313-092X/2018-3(99)-6.
  9. Plohinskij, N. A. (1961). biometrija. Izd-vo SO AN SSR.
  10. Polupan, Yu. P. (2004). Efekty`vnist` vy`kory`stannya koriv zalezhno vid yixn`ogo viku. Visny`k agrarnoyi nauky`, (2), 23-25.
  11. Polupan, Yu. P. (2000). Efekty`vnist` dovichnogo vy`kory`stannya chervonoyi molochnoyi xudoby`. Rozvedennya i genety`ka tvary`n.K.: Agrarna nauka, 97-105.
  12. Polupan, Yu. P. (2014). Efekty`vnist` dovichnogo vy`kory`stannya koriv rizny`x krayin selekciyi. Visny`k Sums`kogo nacional`nogo agrarnogo universy`tetu. Seriya: Tvary`nny`cztvo, (2 (2)), 14-20.
  13. Stavecz`ka, R. V. (2001). Try`valist` produkty`vnogo vy`kory`stannya koriv yak faktor selekcijnogo ta ekonomichnogo progresu u molochnomu skotarstvi. Rozvedennya i genety`ka tvary`n. 2001. Vy`p, 34, 210-211.
  14. Xmel`ny`chy`j, L. M., Salogub, A. M., Shevchenko, A. P., Xmel`ny`chy`j, S. L., Bilonog, O. O., Burlachenko, K. Yu., & Koval`, O. M. (2012). Minly`vist` dovichnoyi produkty`vnosti koriv ukrayins`koyi chorno-ryaboyi molochnoyi porody` zalezhno vid genealogichny`x formuvan`. Visny`k Sums`kogo nacional`nogo agrarnogo universy`tetu. Seriya: Tvary`nny`cztvo, (10), 12-17.
  15. Shevchuk, N. P. (2018). Produkty`vne dovgolittya rody`n koriv ukrayins`kolj chervonoyi molochnoyi porody`. Visny`k agrarnoyi nauky` Pry`chornomor’ya, 4 (100), 118-122. doi: 31521/2313-092X/2018-4(100)-18.
  16. Shkurko, T. P. (2006). Molochna produkty`vnist` golshty`ns`ky`x koriv zalezhno vid try`valosti produkty`vnogo vy`kory`stannya. Insty`tut tvary`nny`cztva UAAN: Naukovo-texnichny`j byuleten`, (94), 449-452.
  17. Shherbatuj, Z. E., & Bodnar, P. V. (2014). Pry`chy`nu brakovky` korov raznux genoty`pov y` ly`ny`j. Naukovy`j visny`k L`vivs`kogo nacional`nogo universy`tetu vetery`narnoyi medy`cy`ny` ta biotexnologij imeni SZ G`zhy`cz`kogo, 16(2-3).
  18. Yashhuk, T. S. (2011). Vply`v genoty`pny`x chy`nny`kiv na try`valist` ekspluataciyi koriv ukrayins`koyi chorno-ryaboyi molochnoyi porody`. Rozvedennya i genety`ka tvary`n, (45), 331-340.
  19. Chiumia, D., Chagunda, M. G., Macrae, A. I., & Roberts, D. J. (2013). Predisposing factors for involuntary culling in Holstein–Friesian dairy cows. Journal of dairy research, 80(1), 45-50. doi: 1017/S002202991200060X
  20. Forabosco, F., Jakobsen, J. H., & Fikse, W. F. (2009). International genetic evaluation for direct longevity in dairy bulls. Journal of dairy science92(5), 2338-2347. doi: 3168/jds.2008-1214
  21. Ghaderi-Zefrehei, M., Rabbanikhah, E., Baneh, H., Peters, S. O., & Imumorin, I. G. (2017). Analysis of culling records and estimation of genetic parameters for longevity and some production traits in Holstein dairy cattle. Journal of applied animal research, 45(1), 524-528. doi: 10.1080/09712119.2016.1219258
  22. Jenko, J., Gorjanc, G., Kovač, M., & Ducrocq, V. (2013). Comparison between sire-maternal grandsire and animal models for genetic evaluation of longevity in a dairy cattle population with small herds. Journal of dairy science96(12), 8002-8013. doi: 3168/jds.2013-6830
  23. Meszaros, G., Fuerst, C. H. R. I. S. T. I. A. N., Fuerst-Waltl, B. I. R. G. I. T., Kadlečík, O. N. D. R. E. J., Kasarda, R., & Sölkner, J. O. H. A. N. N. (2008). Genetic evaluation for length of productive life in Slovak Pinzgau cattle. Archives Animal Breeding51(5), 438-448. doi: 5194/aab-51-438-2008
  24. Nor, N. M., Steeneveld, W., & Hogeveen, H. (2014). The average culling rate of Dutch dairy herds over the years 2007 to 2010 and its association with herd reproduction, performance and health. Journal of dairy research81(1), 1-8. doi : 10.1017/S0022029913000460
  25. Potočnik, K., Gantner, V., Krsnik, J., Štepec, M., Logar, B., & Gorjanc, G. (2011). Analysis of longevity in Slovenian Holstein cattle. Acta Agriculturae Slovenica98, 93-100. doi: 10.2478/v10014-011-0025-5.

Highly Productive Cows of Holstein Breed Under Intensive Technology

UDC 623.2.082

DOI: 10.31521/2313-092X/2019-2(102)-12

 

T. Pidpala
Yu. Matashnyuk

 

      Researches, on the evaluation of the development of traits in high-yielding Holstein breeds for intensive milk production technology, have established that the animals of the group “> 9956” had the advantage in terms of productivity. During the first lactation their milk yield was higher for 3829 kg (p <0.001) than at the first-born of the group “<7936”. Similarly, the advantage was established for the second, third and fourth lactations. The difference was 3021 kg (p <0.001), 2346 kg (p <0.001) and 1195 kg of milk, accordingly. It was found that the difference in milk fat by the first, second, third and fourth lactations was 149.5 kg (p <0.001), 113.5 kg (p <0.001), 100.3 kg (p <0.001) and 48.2 kg compared to low-yielding cows (group “<7936”). By the amount of milk protein, the probable differences were also found which are 122.7 kg (p <0.001), 98.9 kg (p <0.001), 82.6 kg (p <0.001) and 37.5 kg, accordingly.
     The comparative analysis does not reveal differences in the fat and protein content of milk between animals in experimental groups. In cows of the group “>9956” fatty milk varied within the range of 3.91 … 4.02%, and protein digestibility was 3.22 … 3.32%, and in animals of the group “<7936” – 3.91 … 4.03% and 3.22 … 3.34%, accordingly.
     Such signs as milk yield, the amount of milk fat and protein during the second, third and fourth lactation are characterized by coefficients of high-level variability in the high-yielding cows. According to the cows of the group “<7936”, the tendency of variability of breeding traits is almost the same, however, some differences in the variability parameters especially in the fourth lactation are revealed.
     It has been established that each lactation of cows is characterized by different indices of milk yield, milk fat and milk protein content. The same signs of productivity are differ from each other for different lactations and this is due to age-related changes in animals. According to the numbers of repeatability of the milk yield of highly productive cows (group “>9956”), it was determined that higher values ​​of the coefficient are the characteristic for lactation I-II, I-III and II-III. Regarding the constancy of the amount of milk fat and protein for certain periods of economic use of cows, both high and low coefficients of repeatability were established.
    Based on the results of the conducted researches, it was found that cows, which showed a high level of productivity for the first lactation, will continue to increase their milk yield in the subsequent lactation, in the condition of proper maintenance for the welfare of the animals.

    Keywords: Holstein breed, highly productive cows, productivity over several lactations, repeatability of breeding traits.

 

References

  1. Abylkasymov D., Chargeishvili S.V., Zhuravleva M.E. and Sudarev N.P. (2015) Analyz pokazatelej produktyvnosty korov luchshegho molochnogho stada Rossyy – Analysis of indicators of productivity of cows of the best dairy herd of Russia. Molodoj uchenыj – Young scientist 8/3 : 14 (in Russian).
  2. Byshova, N. G., (2010). Sovershenstvovanye tekhnologhyy proyzvodstva moloka v svjazy s yspoljzovanyem ynnovacyj – Improving the technology of milk production in connection with the use of innovations. Аvtoref. dyss. kand. s.-kh. n. Rjazanj – Abstract. diss. Cand. S.-H. n Ryazan. 19 (in Russian).
  3. Vostroylov, A., Venczova, Y and Sutolkyn A. (2007). Adaptacy`ya korov nemeczkoj selekcy`y` v Central`nom Chernozem`e – Adaptation of cows of German selection in the Central Chernozem. Molochnoe y` myasnoe skotovodstvo – Dairy and meat cattle breeding. 3 : 28-29 (in Russian).
  4. Gil, M.I., and Galushko, I. A. (2007). Zumovlenistj molochnoji produktyvnosti doslidzheno na korovakh gholshtynsjkoji porody – Condition of milk productivity studied on cows of Holstein breed. Tvarynnyctvo Ukrajiny – Livestock of Ukraine. 5 : 9-10 (in Ukrainian).
  5. Gil, M.I., and Galushko, I. A. (2005). Porivnjaljnyj analiz gholshtynsjkoji khudoby riznykh linij za molochnoju produktyvnistju v umovakh AF «Aghro-Sojuz» Dnipropetrovsjkoji oblasti – Comparative analysis of Holstein cattle of different lines for milk production in the conditions of AF «Agro-Soyuz» of the Dnipropetrovsk region. Visnyk aghrarnoji nauky Prychornomor’ja. Mykolajiv : MDAU – Bulletin of the Agrarian Science of the Black Sea Region. Mykolaiv: MDAU. 25 : 151-157 (in Ukrainian).
  6. Demchuk, M.P., (2002) Vykorystannja importovanoji khudoby v umovakh pivdnja UkrajinyUse of imported livestock in the south of Ukraine. Ljvivsjkoji derzhavnoji akademiji veterynarnoji medycyny im. S. Z. Ghzhycjkogho. LjvivScientific herald of the Lviv State Academy of Veterinary Medicine. S. Z. Gzhytsky. Lviv. 3 : 18-21 (in Ukrainian).
  7. Dunin, I. M., Kochetkov, A. and Sharkayev, V. (2011). Plemennыe y produktyvnыe kachestva molochnogho skota v Rossyjskoj Federacyy – Breeding and productive qualities of dairy cattle in the Russian Federation. Molochnoe y mjasnoe skotovodstvo – Dairy and beef cattle breeding. 8 : 2-5 (in Russian).
  8. Litvinenko T., (2004). Produktyvnistj gholshtynsjkykh koriv vitchyznjanoji ta zarubizhnoji selekciji – Productivity of Holstein cows of domestic and foreign breeding. Tvarynnyctvo Ukrajiny – Livestock of Ukraine. 7 : 11-12 (in Ukrainian).
  9. Lucenko, M., and Smolyar, V. (1994). Xaraktery`sty`ky` vy`sokoprodukty`vny`x koriv – Characteristics of high-yielding cows. Tvary`nny`cztvo Ukrayiny – Livestock of Ukraine. 4 : 8-9 (in Ukrainian).
  10. Merkurieva, E.K, (1970). Byometryja v selekcyy y ghenetyke seljskokhozjajstvennыkh zhyvotnыkh – Biometrics in breeding and genetics of farm animals. M.: Kolos – M. : Kolos. 422 (in Russian).
  11. Movchan, T., and Danko, V. (2004). Osoblyvosti ekster’jeru gholshtynsjkykh koriv – Features of the exterior of Holstein cows. Tvarynnyctvo Ukrajiny – Livestock of Ukraine. 8 : 16-17 (in Ukrainian).
  12. Pidpala, T. V., (2006). Skotarstvo i tekhnologhija vyrobnyctva moloka ta jalovychyny – Livestock and milk and beef production technology. Kurs lekcij – A course of lectures : 171 (in Ukrainian).
  13. Pidpala, T. V., and Zaitsev, Ye.M. (2017). Ocinka molochnoji produktyvnosti koriv gholshtynsjkoji porody riznykh ghenetyko-ekologhichnykh pokolinj – Estimation of dairy productivity of cows of Holstein breed of various genetic and ecological generations. Visnyk Sumsjkogho nacionaljnogho aghrarnogho universytetu : Tvarynnyctvo. Sumy – Visnyk of Sumy National Agrarian University: Livestock. Sumy. 5/1 (31) : 134-138 (in Ukrainian).
  14. Pidpala, T. V. and Matashnyuk, Yu. S. (2017). Ocinka potokovo-cekhovoji systemy vyrobnyctva moloka – Estimation of flow-shop system of milk production. Visnyk aghrarnoji nauky Prychornomor’ja. Mykolajiv – Bulletin of agrarian science of the Black Sea region. Mykolaiv. 2 : 136-144 (in Ukrainian).
  15. Prokhorenko, P. N, and Loginov, Zh. G. (2005). . Ocenka bыkov proyzvodytelej ghlavnыj vopros v selekcyy molochnogho skota – Evaluation of producers’ bulls is the main issue in dairy cattle breeding. Molochnoe y mjasnoe skotovodstvo – Dairy and beef cattle breeding. 5 : 19 (in Russian).
  16. Pidpala, T.V., Voinalovich, S. A., Nazarenko, V. Gh., Gherasymenko, V. V., Strikha, L. O. and Ckhvitava, O. K. (2012). Selekcija molochnoji khudoby i svynej : navch. Posib – Selection of dairy cattle and pigs: teach. Manual. ; za red. profesora T. V. Pidpaloji. Mykolajiv – for ed. Professor T. V. Podpaloi. Mykolaiv. 297 (in Ukrainian).
  17. Tunikov, G.M., Byshova, N.G. and Ivanova, L.V. (2011). Racyonaljnыe pryemы v kormlenyy gholshtynskykh korov pry bespryvjaznom soderzhanyy – Rational techniques in feeding Holstein cows with loose housing. Zootekhnyja – Zootekhniya. 4 : 16-17 (in Russian).
  18. Khmelnychiy, L., (2001). Molochna produktyvnistj i typ chervono-rjabykh gholshtyniv nimecjkoji selekciji – Milk productivity and type of red-rye holstein of German breeding. Tvarynnyctvo Ukrajiny – Livestock of Ukraine. 2 : 20-10 (in Ukrainian).
  19. Wielgosz-Groth, Z. Groth I. Quality of Colostrums in cows milked twice or three times daily during the first six days after calving // Annals of animal science. Krakow, 2001. Vol. 1, № 1.        P. 25-37 (in English).

Principal Component Analysis (PCA) of the reproductive traits in the Large White sows

UDC 636.4.034 / 57.087.01

DOI: 10.31521/2313-092X/2019-2(102)-11

 

S. Kramarenko
A. Kramarenko
S. Lugovoy
A. Lykhach
V. Lykhach

 

      The objective this work was evaluation of the sow’s reproductive traits using Principal Component Analysis (PCA). The population used for the present study is from a pig farm managed by ‘Tavriys’ki Svyni’ Ltd (Kherson region, Ukraine), where the collected data between January 2007 and December 2017 was analyzed. In total, 633 farrow observations were available from 138 Large White (LW) sows.
     Variables measured and derived included total no. piglets born (TNB), no. piglets born alive (NBA), no. of stillborn piglets (NSB), freq. of stillborn piglets (FSB), average piglet birth weight (APBW), pre-weaning mortality in piglets (PWM), no. weaned piglets (NW) and average piglet weaning weight (APWW).
The parities 9 and higher were combined into one parity class (9+), which gave 9 levels for the parity effect. Effect of season of farrowing was analysed in 12 periods: January, February, …, December.
     Litter sizes at birth (TNB and NBA) were positively correlated with no. weaned piglets (NW), but were negatively correlated with piglet birth (APBW) and weaning (APWW) weights. The positive phenotypic correlation between TNB and NSB (and FSB) indicates that piglets born in a large litter are more likely to die than those born in smaller ones.
     Three principal components (PC) accounted for near 80% of the dependency structure existing among the eight reproductive traits in the LW sows. The first principal component (PC1) accounted for 33.6% of the total variance and was influenced by TNB and NBA. Thus, PC1 may be interpreted as “potential fecundity of sows”. The second principal component (PC2) accounted for 27.1% of the total variance and linked to NBA (positive), NSB and FSB (negative). Therefore, PC2 may be interpreted as “realised fecundity of sows”. At last, the third principal component (PC3) derived from the LW sow’s reproductive traits accounted for 18.7% of the total variance and contrasted sows having large no. weaned piglets and low pre-weaning mortality in piglets with sows having small no. weaned piglets and high pre-weaning mortality in piglets.
     Number of parity had a significant effect on the sow’s reproductive traits. Thus, TNB in the LW sows increased to the 5th parity and then decreased. Liveborn litter size (NBA) decreased after the 4th parity rapid. Season of farrowing did not significantly affect potential and realised fecundity of sows. However, the number of weaned piglets was the highest in sows farrowed in June-September, and the lowest in sows farrowed in winter.

     Keywords: reproductive traits, Principal Component Analysis (PCA), parity, season of farrowing, sows.

References

  1. Borges, V. F., Bernardi, M. L., Bortolozzo, F. P., & Wentz, I. (2005). Risk factors for stillbirth and foetal mummification in four Brazilian swine herds. Preventive Veterinary Medicine, 70(3-4), 165-176. doi: 1016/j.prevetmed.2005.03.003
  2. Canario, L., Cantoni, E., Le Bihan, E., Caritez, J.C., Billon, Y., Bidanel, J.P., et al. (2006). Between-breed variability of stillbirth and its relationship with sow and piglet characteristics. Journal of Animal Science, 84(12), 3185-3196. doi: 10.2527/jas.2005-775
  3. Fahmy, M. H., & Bernard, C. S. (1972). Interrelations between some reproductive traits in swine. Canadian Journal of Animal Science, 52(1), 39-45. doi: 10.4141/cjas72-004
  4. Franci, O., Pugliese, C., Bozzi, R., Acciaioli, A., & Parisi, G. (2001). The use of multivariate analysis for evaluating relationships among fat depots in heavy pigs of different genotypes. Meat Science, 58(3), 259-266. doi: 10.1016/S0309-1740(00)00163-7
  5. Gregory, N. G., & Whelehan, O. P. (1983). Skull shape in relation to carcass fatness in pigs. Journal of the Science of Food and Agriculture, 34(12), 1397-1403. doi:1002/jsfa.2740341213
  6. Halafyan, A.A. (2007). STATISTICA 6. Statisticheskij analiz dannyh [Statistical data anaysis]. Moscow: «Binom-Press» Ltd. (in Russian).
  7. Hanenberg, E. H. A. T., Knol, E. F., & Merks, J. W. M. (2001). Estimates of genetic parameters for reproduction traits at different parities in Dutch Landrace pigs. Livestock Production Science, 69(2), 179-186. doi: 10.1016/S0301-6226(00)00258-X
  8. Hu, Y., Suzuki, T., Noguchi, G., Li, Y., Kitamura, Y., & Satake, T. (2007). Study on evaluation of carcass traits and pork quality using principal component analysis. Nogyo Shisetsu (Journal of the Society of Agricultural Structures, Japan), 37(4), 173-182.
  9. Imboonta, N., Rydhmer, L., & Tumwasorn, S. (2007). Genetic parameters for reproduction and production traits of Landrace sows in Thailand. Journal of Animal Science, 85(1), 53-59. doi: 10.2527/jas.2005-708
  10. Karlsson, A. (1992). The use of principal component analysis (PCA) for evaluating results from pig meat quality measurements. Meat Science, 31(4), 423-433. doi: 10.1016/0309-1740(92)90025-Y
  11. Kramarenko, S. S., Lugovoy, S. I., Lykhach, A. V., Kramarenko, A. S., & Lykhach, V. Y. (2018). A comparative study of the reproductive traits and clustering analysis among different pig breeds. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series “Agricultural sciences”, 20(84), 21-26. doi: 10.15421/nvlvet8404
  12. Kramarenko, S. S., Lugovoy, S. I., Lykhach, A. V., Kramarenko, A. S., Lykhach, V. Ya., & Slobodianyk, A. A. (2019). Effect of genetic and non-genetic factors on the reproduction traits in Ukrainian Meat sows. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies. Series “Agricultural sciences”, 21(90), 3-8. doi: 10.32718/nvlvet-a9001
  13. Leenhouwers, J. I., van der Lende, T., & Knol, E. F. (1999). Analysis of stillbirth in different lines of pig. Livestock Production Science. 57(3), 243-253. doi: 10.1016/S0301-6226(98)00171-7
  14. Leigh, A. O. (1977). Litter performance characteristics of pigs in tropical south-western Nigeria 1. Breed differences and effects of some non-genetic sources of variation. Animal Science, 24(3), 323-331. doi: 10.1017/S0003356100011831
  15. Love, R. J., Evans, G., & Klupiec, C. (1993). Seasonal effects on fertility in gilts and sows. Journal of Reproduction and Fertility. Supplement, 48, 191-206. PMID:8145204
  16. Okoro, V. M., Ogundu, U. E., Okani, M., Oziri, I., Eneowo, O., Olisenekwu, O. T., et al. (2015). Principal Component Analysis of Conformation and Blood Marker Traits at Pre-and Post-Weaning Stages of Growth in F2 Crossbred Nigerian Indigenous × Landrace Pigs. Animal Biotechnology, 26(4), 243-250.
  17. Ros-Freixedes, , Sadler, L. J., Onteru, S. K., Smith, R. M., Young, J. M., Johnson, A. K., et al. (2014). Relationship between gilt behavior and meat quality using principal component analysis. Meat Science, 96(1), 264-269. doi:  10.1016/j.meatsci.2013.07.004
  18. Schwarz, T., Nowicki, J., & Tuz, R. (2009). Reproductive performance of Polish Large White sows in intensive production: effect of parity and season. Annals of Animal Science, 9(3), 268-277.
  19. Shebanin, V. S., Melnik, S. I., Kramarenko, S. S., & Ganganov, V. M. (2008). Analіz strukturi populyatsіy [Analysis of population structure]. MSAU Publishing House, Mykolayiv (in Ukrainian).
  20. Southwood, O. I., & Kennedy, B. W. (1991). Genetic and environmental trends for litter size in swine. Journal of Animal Science, 69(8), 3177-3182. doi: 10.2527/1991.6983177x
  21. Tantasuparuk, W., Lundeheim, N., Dalin, A.M., Kunavongkrit, A., & Einarsson, S. (2000). Reproductive performance of purebred Landrace and Yorkshire sows in Thailand with special reference to seasonal influence and parity number. Theriogenology, 54(3), 481-496. doi: 10.1016/S0093-691X(00)00364-2
  22. van Steenbergen, E. J. (1989). Description and evaluation of a linear scoring system for exterior traits in pigs. Livestock Production Science, 23(1-2), 163-181. doi: 10.1016/0301-6226(89)90012-2
  23. Zaleski, H. M., & Hacker, R. R. (1993). Effect of oxygen and neostigmine on stillbirth and pig viability. Journal of Animal Science, 71(2), 298-305. doi: 10.2527/1993.712298x
  24. Young, L. D., Johnson, R. K., & Omtvedt, I. T. (1977). An analysis of the dependency structure between a gilt’s prebreeding and reproductive traits. II. Principal component analysis. Journal of Animal Science, 44(4), 565-570. doi: 10.2527/jas1977.444565x
  25. Young, L. D., Pumfrey, R. A., Cunningham, P. J., & Zimmerman, D. R. (1978). Heritabilities and genetic and phenotypic correlations for prebreeding traits, reproductive traits and principal components. Journal of Animal Science, 46(4), 937-949. doi: 10.2527/jas1978.464937x.

Digital relief model as a spatial basis for mapping soils using remote methods

UDC 528.9

DOI: 10.31521/2313-092X/2019-2(102)-10\


D. Sadova

 

    For today remote sensing methods of the Earth are the main source for relief modeling. In recent years, the issue of updating the methodology soil mapping is more often raised. Today, the information component of the soil state consists of materials of large-scale soil surveys , which were conducted in the 50-60s of the last century. The use of materials obtained through remote sensing has made the process of soil mapping more technological. The basis for mapping soil taken digital elevation models, which is more of an alternative to the data obtained in a traditional way.
    The SRTM digital elevation model, was used in the work which is more accurate than other models. SRTM model based on radar interferometric survey of terrestrial surface by SIR-C/X-SAR radar system installed on board the spacecraft Shuttle Endeavor. The principle of operation of the radar complex is to measure the height of the reflecting, not the topographic surface: in the forested areas – the height of the trees, in the snowy area – the height of the snow cover.
To construct a digital elevation model were chosen the sloping soils of the right-bank steppe of Ukraine, namely the agricultural land of the Arbuzinsky district of the Mykolaiv region. The terrain are represented by black soils with feeble and medium degree of blur.
    From the SRTM catalog received date for a clear distribution of the experimental field to the divide and the slope to construction a digital elevation model. Data processing was performed using the SAGA GIS software. On the basis of the obtained model, isolines were constructed and the following basic geomorphometric parameters such as slope and surface exposure, horizontal, vertical and general curvature were determined.
    The obtained results indicate that the attraction of modern ones GIS technologies and the digital elevation model are an integral part of the complete mapping and updating of existing ground maps.

    Keywords: soil mapping, remote sensing, digital terrain model, SRTM, geomorphometric parameters.

References

  1. Achasov A.A. (2008) Vykorystannya cyfrovyx modelej relyefu pry doslidzhenni gruntovogo pokryvu. Visny`k XNAU, 1, 157-159.
  2. Postel`nyak A.A. (2013) Ocinyuvannya tochnosti vysot cyfrovyx modelej rel`yefu SRTM ta ASTER GDEM. Visny`k geodeziyi ta kartografiyi,4, 17-21.
  3. Cherlіnka, V.R. (2015). Adaptaczіya velikomasshtabnix kart gruntіv do yikh praktichnogo vikoristannya u GІS. Agroxіmіya і gruntoznavstvo, 84, 20-28.
  4. Bulygin, S.Y., Shatoxin, A.V., Achasov, A.B., & Truskaveczkij, S.R. (2015). O neobxodimosti novoj metodologii kartografii pochv. Gruntoznavstvo, 4, 5-10.
  5. Abramov, D.A. (2013). Vyznachennia parametrіv “hruntovoi lіnіi” temno-kashtanovykh hruntіv Pravoberezhnoho Stepu Ukrainy za dopomohoiu suputnykovoi іnformatsіi. Vіsnyk ahrarnoi nauky Prychornomor’ia, 132-135.
  6. Pavlova, A.N. (2009). Geoinformacionnoe modelirovanie rechnogo bassejna po dannyam sputnikovoj s`emki SRTM (na primere bassejna r.Tereshki). Izvestiya Saratovskogo universiteta, 9, 39-44.
  7. Pogorelov, A.V., & Dumit, Z.A. (2007). Morfometriya rel`efa basejna reki Kubani: nekotory`e rezul`taty` cifrovogo modelirovaniya. Geograficheskie issledovaniya Krasnodarskogo kraya, 7-23.
  8. Athmania, D., & Achour , H. (2014). External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 Free Access Digital Elevation Models (DEMs) in Tunisia and Algeria. Remote Sensing, 6, 4600-4620.
  9. Farr, T. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45,
    1-33.
  10. On`kov, I.V. (2011). Ocenka tochnosti vysot SRTM dlya celej ortotransformirovaniya kosmicheskix snimkov vysokogo razresheniya . Geomatika, 3, 40-46.
  11. Kleshh, A.A., Maksimenko, N.V., & Baskakova, L.V. (2014). Modelyuvannya geomorfometrichnix xarakteristik mіs`kix landshaftіv. Vіsnik XNU іmenі V. N. Karazіna, 1140,
    24-35.

 

Grain sorghum young growth formation depending on weather conditions of the Eastern Forest-Steppe

UDC [633.174:631.547.1]:58.05(477.52/.6)

DOI: 10.31521/2313-092X/2019-2(102)-9

 

A. Svyrydov
A. Svyrydov

 

     Today remote sensing methods of the Earth are the main source for relief modeling. In recent years, the issue of updating the methodology soil mapping is more often raised. Today, the information component of the soil state consists of materials of large-scale soil surveys , which were conducted in the 50-60s of the last century. The use of materials obtained through remote sensing has made the process of soil mapping more technological. The basis for mapping soil taken digital elevation models, which is more of an alternative to the data obtained in a traditional way.
    The SRTM digital elevation model, was used in the work which is more accurate than other models. SRTM model based on radar interferometric survey of terrestrial surface by SIR-C/X-SAR radar system installed on board the spacecraft Shuttle Endeavor. The principle of operation of the radar complex is to measure the height of the reflecting, not the topographic surface: in the forested areas – the height of the trees, in the snowy area – the height of the snow cover.
     To construct a digital elevation model were chosen the sloping soils of the right-bank steppe of Ukraine, namely the agricultural land of the Arbuzinsky district of the Mykolaiv region. The terrain are represented by black soils with feeble and medium degree of blur.
     From the SRTM catalog received date for a clear distribution of the experimental field to the divide and the slope to construction a digital elevation model. Data processing was performed using the SAGA GIS software. On the basis of the obtained model, isolines were constructed and the following basic geomorphometric parameters such as slope and surface exposure, horizontal, vertical and general curvature were determined.
     The obtained results indicate that the attraction of modern ones GIS technologies and the digital elevation model are an integral part of the complete mapping and updating of existing ground maps.

     Keywords: soil mapping, remote sensing, digital terrain model, SRTM, geomorphometric parameters.

References

  1. Tkachenko T.G., Reshetchenko S.I. (2017) Suchasni agrometeorologichni umovy` na tery`toriyi Xarkivs`koyi oblasti, 2, 7–17.
  2. Rudny`k-Ivashhenko O.I., Storozhy`k L.I. (2011) Stan i perspekty`vy` sorgovy`x kul`tur v Ukrayini, 10, 198–206.
  3. Gerasy`menko L.A. (2013) Rist i rozvy`tok rosly`n sorgo czukrovogo za rizny`x strokiv sivby` ta gly`by`ny` zagortannya nasinnya v umovax Central`nogo Lisostepu Ukrayiny, 1, 76–78.
  4. Makarov L.X. (2006) Sorgovi kul`tury`: monografiya, 263.
  5. Rozhkov A.O., Svy`ry`dova L.A. (2017) Pol`ova sxozhist` nasinnya i vy`zhy`vanist` rosly`n sorgo zernovogo zalezhno vid vply`vu normy` vy`sivu nasinnya ta sposobu sivby, 1, 99-109.
  6. Anda A., Pinter L. (1994) Sorghum germination and development as influenced by soil temperature water content, Vol. 86, No 4, 621–624.
  7. Narkhede B.N., Shinde M.S., Patil S.P. (1997) Stability performance of sorghum varieties for grain and fodder yields / B.N. Narkhede, // Journal of Maharashtra Agricultural University, Vol. 22, 2, 179–181.
  8. Lapa O.M., Svy`ry`dov A.M., Shherbakov V.Ya. ta in. (2008) Vy`roshhuvannya zernovogo sorgo v umovax Ukrayiny` (prakty`chni rekomendaciyi), 36 s.
  9. Svy`ry`dova L.A., Rozhkov A.O. (2017) Ocinka rozvy`tku posiviv sorgo zernovogo za fenologichny`my` sposterezhennya, 4, 18-24.
  10. Dogget H. Sorghum, 1970, 403 p.
  11. Lingle S.E. (1987) Sucrose metabolized in the primary chute of sweet sorghum development, Vol. 27, No 6, Р.1214–1219.
  12. Shepel H.A. (1994) Sorgo, 448 s.
  13. Shherbakov V.Ya. (1983) Zernovoe sorgo, 192 s.
  14. Storozhy`k L.I., Sergyeyeva I.O. (2012) Monitory`ng agrofitocenoziv sorgovogo polya, 14, 345–348.
  15. Balan V.M., Storozhy`k L.I. (2010) Vy`roshhuvannya czukrovogo sorgo yak bioenergety`chnoyi kultury, 5, 14–16.
  16. Bojko M.O. (2016) Obg`runtuvannya agrotexnichny`x pry`jomiv vy`roshhuvannya sorgo zernovogo v umovax Pivdnya Ukrayiny, 33-39.
  17. Storozhyk L., Sergeyeva I. (2012) Influence of density of standing of plants f sweet sorghum on yield formation and accounting accumulation of water-soluble sugar, 18, С.80–83.
  18. Feyt M., Sartori V. (1977) La culture du sorgho grain, Vol. 53, Np 206, 27–28.
  19. Ovsiyenko I.A. Osobly`vosti formuvannya urozhajnosti zerna sorgo zalezhno vid strokiv sivby, 2, 21-28.
  20. Bojko M.O. (2016) Vply`v gustoty` posivu ta strokiv sivby` na produkty`vnist` gibry`div sorgo zernovogo v umovax Pivdni Ukrayiny, 3 (91), 96-104.
  21. Dospexov B.A. (1985) Metody`ka polevogo opita (s osnovamy` staty`sty`cheskoj obrabotky` rezul`tatov y`ssledovany`j, 351 s.
  22. Ermantraut E.R., Pry`syazhnyuk O.I., Shevchenko I.L. (2007) Sty`sty`chny`j analiz agronomichny`x doslidzhen` dany`x v paketi Statistica 6.0: metod. Vkazivky, 55 s.

 

Ways to increase the survival rate of sweet sorghum plants in the conditions of Southern Step in Ukraine

UDC 633.17(477/7)

DOI: 10.31521/2313-092X/2019-2(102)-8

 

A. Chernova
O. Kovalenko
M. Korkhova
L. Antipova

 

        The article presents an analysis of the data on the effect of the studied factors on the growth and development of plants obtained in the phase of full ripeness of the grain. The varieties had a minimum survival rate of 74,9% in the Silo 700D and 77,1% in the Favorite, and in the Honey Hybrid – 78,5% and Troistiy – 77,6%, respectively. Plant survival during the period of full ripeness was significantly different depending on both the variety and the hybrid, and from other factors under study. This is due to the morpho-biological and physiological characteristics of varieties and hybrids, which contributed to better growth and development of plants, and ultimately led to an improvement in the photosynthetic apparatus of plants, which forms the productivity of the studied plants. The highest survival rates were noted with a planting density of 70 thousand units / ha in the variety Favorite and hybrids Honey with Troistiy. Thus, Honey hybrid in the control plots this indicator changed from 80,1 with a seeding density of 70 thousand units/ha to 78,7% with a planting density of 160 thousand units/ha, respectively. Only the variety Silo 700 D in variants without processing of plants with biopreparations and microfertilizers and seeding density 70, 130 and 160 thousand pcs/ha, the survival rate of plants was slightly lower compared with the control standing density of 100 thousand pcs/ha. The using for plants processing of Biocomplex-BTU and Kvantum microfertilizers contributed to an increase in survival rates for all varieties and hybrids. Thus, the variety Favorit, with a planting density 70 thousand pieces /ha, the survival rate of plants under the action of a biological preparations increased by 1,7%, a mix of microfertilizers – by 3,1%, a joint processing with a mix of preparations – on 3 times, compared with the control variant.

         Keywords: sweet sorghum, varieties and hybrids, seeding rate, biopreparations and microfertilizers, plant density and plant survival.

References

  1. Aldoshin, A. Samoylenko, A., Fedorenko, E., Yalanskiy, A., Cherenkova, T. (2013). Features of seedling sorghum crops. Byuleten Institutu silskogo gospodarstva stepovoyi zoni NAAN UkraYini, 5. Available at: http://www.institut-zerna.com/library/pdf5/23.pdf (accessed 5 March 2019).
  2. Obayan, A., Kolomiets, N. (2006). Sorghum – profitable culture. Zemledelie, 4, 31.
  3. Zemlyanov, V., Smilovenko, A. (2011). The role of sugar sorghum in the stabilization of fodder production in the Don. Kormoproizvodstvo, 1. 32-33.
  4. Gerasimenko, L. (2017). Prospects for growing sorghum in Ukraine. Zbirnik nauk. prats «Aktualni pitannya suchasnih tehnologIy viroschuvannya silskogospodarskih kultur v umovah zmin klimatu» vseukr. nauk.-prakt. konf. [“Topical issues of modern technologies of growing crops in conditions of climate change”: Collection of scientific works of the All-Ukrainian scientific and practical conference]. Ternopil, 69.
  5. Petrichuk, L. (2015). Agrobiologichni osnovi formuvannya visokoproduktivnih agrofitotsenoziv silosnih kultur v umovah Pivdennogo Stepu. Avtoref, Diss. [Agrobiological bases of formation of highly productive agrophytocenoses of silage crops in the conditions of Southern Steppe. Avtoref, Diss.]. Herson, 18.
  6. Kurilo, V., Grigorenko, N., Marchuk, O., Funina, I. (2013). Productivity of Sorghum Saccharum (L.) Pers.) depending on varietal characteristics and different density of plants standing. Sortovivchennya ta ohorona prav na sorti roslin [Variety study and protection of rights to plant varieties], 3, 8-12.
  7. Cherenkov, A., Shevchenko, M., Dzyubetskiy, B. (2011). Cereals: technology, use, hybrids and varieties: recommendations. Dnipropetrovsk : Royal Print, 63.
  8. Storozhik L., Budovskiy M. (2016). Productivity of sugar sorghum as a source of biofuel production in compatible crops with other crops. Tsukrovi buryaki [Sugar beets], 2. 7-11.
  9. Voskobulova, N., (2003). Sovershenstvovanie tehnologicheskih priemov vyiraschivaniya saharnogo sorgo v stepnoy zone Orenburgskogo Preduralya. Kand. Diss. [Improvement of technological methods of cultivating sugar sorghum in the steppe zone of the Orenburg Preurals. Kand. Diss.]. Orenburg, 149.
  10. Karakalchev A., Rahimbekov T., Makarov V., Rusakov P. (1985). Sorgo in the desert. Kukuruza i sorgo. [Corn and Sorghum], 4, 24-25.
  11. Pigorev, I., Ishkov, I. Survival and conservation of sorghum plants under forest conditions. Available at: https://cyberleninka.ru/article/n/vyzhivaemost-i-sohrannost-rasteniy-sorgo-v-usloviyah-lesostepi. (accessed 5 March 2019).
  12. Rozhkov, A., Sviridova, L. (2017). Polova shozhIst nasInnya I vizhivannya roslin sorgo zernovogo zalezhno vId vplivu normi visIvu ta sposobu sIvbi. Visnik HNAU [Bulletin KhNAU], 1, 99-109. Available at: http://nbuv.gov.ua/UJRN/Vkhnau_roslyn_2017_1_14. (accessed 5 March 2019).
  13. Grabovskiy, M., Fedoruk, Yu., Pravdiva, L., Grabovska, T. (2018). Having absorbed the living space of the Roslin sorghum of the tsukrovy and kukurudzi on īх ріст, rozvitok that yields greenness of the masses in the sum of the villages. Naukovi dopovidi NUBIP Ukrayini [Scientific reports of NUBiP of Ukraine], 5 (75), 14-16. Available at: https://journals.indexcopernicus.com/api/file/viewByFileId/420720.pdf (accessed 5 March 2019).
  14. Marchuk, O. (2015). Produktivnist sorgo tsukrovogo zalezhno vid elementiv tehnologiyi viroschuvannya. Diss. kand. s.-g nauk [Productivity of sugar sorghum depending on elements of cultivation technology. PhD. Diss.]. Kiev, 22.
  15. Derzhavniy reestr sortIv roslin pridatnih dlya poshirennya v UkraYinI u 2013 rotsI. [The State Register of Plant Varieties is suitable for distribution in Ukraine in 2013]. Kiev, 2013, 495.
  16. Eschenko, V., Kopitko, P., Kostogriz, P., Oprishko, V. (2014). Osnovi naukovih doslidzhen v agronomiyi [Fundamentals of scientific research in agronomy]. Vinnitsya, Edelweiss and K. Publ, 332.
  17. Lebid, E., Dzyubetskiy, B., Cherenkov, A. (2006). Sorgo v Prisivashii [Sorghum in Presivashye]. Dnipropetrovsk, 29.
  18. Sluzhba derzhavnoyi statistiki Ukrayini [State Statistics Service of Ukraine]. Available at: https://www.ukrstat.gov.ua (accessed 5 March 2019).
  19. Kurilo, V., Grigorenko, N., Marchuk, (2013). O. Influence of varietal features and norms of introduced fertilizers on phenological parameters and productivity of sugar sorghum plants. Tsukrovi buryaki [Sugar beets], 4 (94), 13–14.
  20. Kovalenko, O., Chernova, A. (2018). The influence of seeding rates, biopreparations and microfertilizers on the formation of plant height of sweet sorghum varieties and hybrids under the conditions of the south of Ukraine. Tavriyskiy naukoviy visnik : Naukoviy zhurnal [Taurian Scientific Journal: Scientific Journal]. Herson: Vidavnichiy dIm «Gelvetika», 101, 54-62.

Modeling and agroecological substantiation of a recovery period for soils to ensure their sustainable functioning

UDC 631.4 : 631/635

DOI: 10.31521/2313-092X/2019-2(102)-7

 

P. Trofymenko
V. Zhuravlev
N. Trofymenko
S. Veremeyenko

 

      The paper presents the algorithm of modeling, agroecological substantiation and features of the use of a recovery period for soils to ensure their sustainable functioning. Based on the information on the soil emission activity, it is proposed to determine a period of a low CO2 emission intensity as a soil recovery period (SRP). Within the SRP it is proposed to distinguish autumn (I) and spring (II) parts of it. It is shown that paying special attention to the time intervals with different intensity of CO2 emissions enables to minimize the losses of С-СО2.
     The duration of the recovery period for different soils varied over the years of research and depended on weather and climatic conditions as well as on their fertility. The number of SRP days with a minimal (<1 kg / ha / year), middle (<1 to 1.5 kg / ha / year) and high (<1.5 to 2.0 kg / ha / year) intensity of CO2 emissions from the soil was on average for: soddy medium-podzolic fixed-sandy soil on the loesslike  deposits, respectively – 30,7; 38.7; 45,7; soddy medium-podzolic fixed-sandy soil on the  ancient alluvium – 25,3; 34.4; 42,1; clear-gray, eluviated sandy soil on the loesslike  deposits – 19,2; 26.2; 32,6; clear-gray eluviated sandy-light loamy soils on the loesslike  deposits – 14,9 21,1 26,4.
     The estimated C losses in the total amount of CO2 emissions from the soddy-podzolic fixed-sandy soil within the SRP by the intensity of CO2 emissions are: at minimal – 3.5-6.3%, middle – 6.9- 12.4% and high intensity – 11.0-19.9%.

     Keywords: modeling, stable functioning, recreation period of soils, CO2 emissions.

References

  1. Balyuk S.A., Medvedyev V.V., Tarariko O.H., Hrekov V.O., Balayev A.D. ta in. (2010) Natsionalʹna dopovidʹ pro stan rodyuchosti gruntiv Ukrayiny. Minahropolityky, Tsentrderzhrodyuchistʹ, NAANU, NNTS IHA imeni O.N.Sokolovsʹkoho, NUBiP, S.14-15.
  2. Dubovyk V. P., Yuryk I. I. (2006). Vyshcha matematyka: Navch. posibn. – K: A.S.K. – 648 s.
  3. Zaklyuchnyy zvit «Pro naukovo-doslidnu robotu rozroblennya stsenariyiv zminy klimatychnykh umov v Ukrayini na serednʹo- ta dovhostrokovu perspektyvu z vykorystannyam danykh hlobalʹnykh ta rehionalʹnykh modeley» (2013). UkrHMI, URL: https: //uhmi.org.ua/project/rvndr/climate.pdf.
  4. Kudeyarov V.N., Zavarzin G.A., Blagodatskiy S. (2007). Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii. Institut fiziko-khimicheskikh i biologicheskikh problem pochvovedeniya RAN. – M.: Nauka, 315s.
  5. Kurganova I.N. (2010). Emissiya i balans dioksida ugleroda v nazemnykh ekosistemakh Rossii: avtor. dis. na soisk. uch. st. dokt. biol. nauk.: spets. 03.00.27 – «Pochvovedeniye, 03.00.16 – Ekologiya. Moskva. 50s.
  6. Kobak K.I. (1988). Bioticheskiye komponenty uglerodnogo tsikla. Izd., Gidrometeoizdat, L., 248 s.
  7. Lopes de Gerenyu V.O., , I.N. Kurganova, L.N. Rozanova, V.N. (2001). Godovaya emissiya dioksida ugleroda iz pochv yuzhnotayezhnoy zony Rossii. № 9.  S. 1045-1059.
  8. Makarov B.N. (1988). Gazovyy rezhim pochvy. Moskva: Agropromizdat, 105 c.
  9. Medvedev V.V., Plisko I.V. (2014). Proyavleniye fizicheskoy degradatsii v raspakhivayemykh pochvakh. Agrokhímíya í g̀runtoznavstvo. № 81. S. 16-28.
  10. Natsional’nyy kadastr antropogennykh vybrosov iz istochnikov i absorbtsii poglotitelyami parnikovykh gazov v Ukraine za 1990-2010 gg./ Ministerstvo ekologii i prirodnykh resursov Ukrainy/ Kiyev, (2012) – 530 s.
  11. Palamarchuk R.P., Trofymenko P.I., Vyshnevsʹkyy F.O., Trofymenko N.V., Borysov F.I. (2018). Zapasy ta vtraty orhanichnoho vuhletsyu dernovo-pidzolystymy gruntamy Zhytomyrsʹkoho Polissya u konteksti zmin klimatu. Ahrokhimiya i gruntoznavstvo. Spets. vyp. do XI-y zʺyizdu gruntoznavtsiv ta ahrokhimikiv Ukrayiny, m. Kharkiv 17-21 veresnya, S. 220-223.
  12. Romashchenko M.I., Tarariko YU.O. (2017). Meliorovani ahroekosystemy. Otsinka ta ratsionalʹne vykorystannya ahroresursnoho potentsialu Ukrayiny zony zroshennya i osushennya/ NAAN Ukrayiny, IVPiM / za red. Romashchenko M.I., Tarariko YU.O., K. S. 15.
  13. Sposib vyznachennya intensyvnosti emisiyi haziv z gruntu: Pat. 98998 Ukrayina, MPK G01F 1/76 (2006/01); № u 201413566; zayavl. 17.12.2014 ; data publikatsiyi 12.05.2015, Byul. № 9.
  14. Trofimenko P.I., Borisov F. I., Trofimenko N. V. Intensivnost’ dykhaniya pochv Levoberezhnogo Poles’ya Ukrainy v usloviyakh agrotsenoza. Pochvovedeniye i agrokhimiya. – 2015. – № 2 (55). – S. 56–65.
  15. Trofymenko P.I. (2015). Naukove obgruntuvannya alhorytmu zastosuvannya kamernoho statychnoho metodu vyznachennya intensyvnosti emisiyi parnykovykh haziv iz gruntu / P.I. Trofymenko, F.I. Borysov // Ahrokhimiya i gruntoznavstvo.. № 83. S. 17–24.
  16. Trofymenko P.I., Trofymenko N. V. (2016). Vplyv abiotychnykh chynnykiv na intensyvnistʹ produkuvannya SO2 gruntamy perekhidnoyi zony tsentralʹnoho polissya v kholodnyy period / Visn. Kharkivsʹkoho nats. ahrar. un-tu im. V. V. Dokuchayeva. № 1. – S. 212–221.
  17. Green J. K., Seneviratne S. I., Berg A. M., Findell K. L., Hagemann S., Lawrence D. M., Gentine P. (2019). Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, volume 565, pages 476–479.
  18. State of the climate in 2017. Special Supplement to the Bulletin of the American Meteorological Society Vol. 99, No. 8, August 2018. P. 332.
  19. Trofimenko P.I., Trofimenko N. V., Borisov F. I., Zubova O. V. (2016). The assessment of the effects of the atmospheric pressure on the intensity of СО2 emission from Polissya soils in the cold time period. Mechanization in agriculture and conserving of the resources. № 5. – P. 20–22.
  20. Yagi K. (1997). Methane emission from paddy filds. Natl. Inst. Agroenviron Sci. № 14. C.96-210.

Modeling and agroecological substantiation of the recreational period of soils to ensure their sustainable functioning

UDC 631.6:631.82:631.03(477.77)

DOI: 10.31521/2313-092X/2019-2(102)-6

 

R. Vozhehova
Ya. Belov

 

      The article reflects the results of studies on the establishment of productivity and cost-effective cultivation of corn hybrids, depending on the density of standing plants and the background of mineral nutrition. It has been proved that in order to obtain the maximum yield when growing the DKS 3730 hybrid, it is necessary to form plant density at the level of 80 thousand/ha; DKS 4764 – 70 thousand; DKS 4795 – 70-80 thousand/ha. The lowest level of cost (1.93-1.98 thousand UAH/t) was recorded in the DKS 3730 hybrid with a plant density of 80 thousand/ha and on the DKS 4795 hybrid with a density of 70 thousand/ha.         The conditional net income exceeded 40 thousand UAH/ha on the variants with hybrids DKS 3730 – with a plant density of 80 thousand UAH/ha; DKS 4764 – with a density of 70 thousand/ha; DKS 4795 – with a density of 70-80 thousand/ha. The maximum level of profitability – 143.5% was in the DKS 3730 hybrid with a plant density of 80 thousand/ha. The tendency to increase the value of gross output and, accordingly, production costs in proportion with the increase to nitrogen and phosphate fertilizers was established. The highest net profit in the experience at the level of 45.7 thousand UAH/ha was obtained on the variant with the hybrid DKS 4795 with the application of fertilizers in the dose of N90P90.

        Keywords: hybrids corn, plant stand density, fertilizers, grain yield, economic efficiency.

References

  1. Lavrinenko, Yu.O., Kokovihin, S.V., & Naiidionov, V.G. (2007). Naukovi osnovy nasinnytstva kukurudzy na zroshyvanykh zemliakh pivdnia Ukrainy : Monografiia [Scientific fundamentals of corn seeding on irrigated lands of southern Ukraine: Monograph]. Herson: Aylant [in Ukrainian].
  2. Lavrinenko, Yu.O., Netreba, A.A., & Polskoi, V.Ya. et al.(2010). Stan, napriamy ta perspektyvy rozvytku selektsii kukurudzy v zroshyvanykh umovakh pivdnia Ukrainy [State, trends and prospects for the development of maize selection in irrigated conditions in southern Ukraine]. Zroshuvane zemlerobstvo. – Irrigated agriculture, 54, 15-27 [in Ukrainian].
  3. Vozhegova, R., Vlashuk, A., & Kolpakova, O. (2017). Vyroshchuvannia kukurudzy na zroshenni v umovakh Pivdennogo Stepu Ukrainy [Growing corn on irrigation in the conditions of the Southern Steppe of Ukraine]. Propozitsia. – Offer, 3, 104-108 [in Ukrainian].
  4. Barlog P. Effect of Mineral Fertilization on Yield of Maize Cultivars Differing in Maturity Scale / P. Barlog, K. Frckowiak-Pawlak // Acta Sci. Pol. Agricultura. – 2008. – №. 7. – P. 5-17.
  5. Influence of Integrated Nutrients on Growth, Yield and Quality of Maize (Zea mays L.) / K. Saracoglu, B. Saracoglu, Aylu and V. Fidan // American Journal of Plant Sciences. – 2011. – Vol. 2, № 1. – P. 63-69.
  6. Vozhehova R. A. Metodyka pol’ovykh i laboratornykh doslidzhen’ na zroshuvanykh zemlyakh / R. A. Vozhehova, Yu. O. Lavrynenko, M. P. Malyarchuk, [ta in.]. Kherson: Vydavets’ Hrin’ D.S. – (2014). – 285.
  7. Ushkarenko, V. O., Vozhehova, R. A., Holoborodko, S. P., & Kokovikhin, S. V. (2014). Metodyka polovoho doslidu (Zroshuvane zemlerobstvo) [Method of field experiment]. Kherson: Hrin D. S. [in Ukrainian].
  8. Polamarchuk M. M., Zakorchevna N. B., Polamarchuk T. M. Ekoloho-ekonomichni problemy vykorystannya vodnykh resursiv u silʹsʹkomu hospodarstvi [Ecologicaleconomic problems of using water resources in agriculture]. Ekonomika APK. 2000. № 10. S. 21.
  9. Shpychak O. M. (2002) Ekonomichni problemy na rynku zerna Ukrayiny [Economic problems on the grain market of Ukraine]. Visnyk ahrarnoyi nauky. 10. 5–10.
  10. Zhuykov H. Ye. (2003) Ekonomichni zasady vedennya zemlerobstva na zroshuvanykh zemlyakh [Economic principles of agriculture on irrigated lands]. Kherson: Aylant. 288.