Issue 4 (108), 2020

Cover sheet

Content

ECONOMICAL SCIENCES

Yu. Kormishkin. SMART growth economic development strategy for associations of territorial communities 4
I. Krylova, T. Ivanenko. Social and economic risk of household poverty in Ukraine 12
AGRICULTURAL SCIENCES
L. Antipova. Formation of the alfalfa variety productivity for hay in the steppe of southern Ukraine 21
A. Mohylnytska, A. Panfilova. Estimation and modeling of the influence of weather and climatic conditions on the yield of winter wheat 29

M. Fedorchuk, O. Kovalenko, V. Havrish, A. Chernova, V. Hruban. Energy evaluation of sorghum growing technology in the South of Mykolaiv region

37
T. Manushkina, А. Drobitko, T. Kachanova, O. Heraschenko. Ecological features of No-till technology in the conditions of the Southern Steppe of Ukraine 47
A. Dobrovolskyi, O. Kovalenko, L. Andreychenko, N. Koloyanidi. Influence of seeding methods on the duration of the growing season and productivity of chickpea varieties 54
L. Pokoptseva, O. Eremenko, L. Todorova, N. Nezhnova. Formation of sunflower productivity of Euralis selection in the Southern Steppe of Ukraine 62
S. Kramarenko, A. Kramarenko, S. Lugovoy, D. Balan, K. Zemoglyadchuk. The effects of breed, sire and environmental factors on the birth and weaning weight of lambs 70
E.  Karatieieva, I.  Lesik. Assessment of the exterior of the main measurements of the physique of heifers depending on their origin 79

TECHNICAL SCIENCES

L. Vakhonina, N. Potryvaieva, О. Sadovyi. Fine elastic circular inclusion in the area of harmonic vibrations of an unlimited body under smooth contact 88
N. Novikova, N. Antonenko. Feasibility of use of wheat variety “Kosovitsa” and vegetable concentrating additives in the technology of producing grain loads 97

Mohylnytska A., Panfilova A. Estimation and modeling of the influence of weather and climatic conditions on the yield of winter wheat

UDC 004.942:632.11:633.11

 

Mohylnytska A., 

Panfilova A. 

 

The article shows results of the research carried out on the southern chernozem in the experimental field of the Mykolayiv national agrarian university in 2011-2016. It gives a detailed analysis of the air temperature change, precipitation, relative humidity and their mixed effect on winter wheat productivity for each phase of field crop development, as well as changes in climate fertility and crop efficiency in the modern climate period (2012-2016). The main sample characteristics of the interaction results of wheat varieties are found and the multifactor regression of yield dependence on hydrometeorological factors is formed.

It is determined that favorable weather conditions in 2015 and 2016 during the growing season of winter wheat plants ensured the highest crop yield, regardless of the studied factors. In average for both varieties and feeding options, in 2015 formed 5.53 t/ ha of grain, and in 2016 – 5.59 t / ha, which exceeded their level in 2012, which was the least favorable for the weather. climatic conditions at 2.63 – 2.69 t / ha or 90.7 -92.8%.It is noted that much higher crop yield of winter wheat and less variability depending on weather and climatic conditions provides cultivation of variety Zamozhnist’with the background of mineral fertilizers applying with dosing N 30 P 30 and carrying out extra-root topdressing of crops with Escort-bio fertilizer. Over the research years in this option of experiment the overage crop yield was 4.99 t / ha.

The main sample characteristics of the interaction results of wheat varieties were found to determine the variety esstability of winter wheat in different ways of feeding. The multifactor linear regression was constructed and its correlation analysis was performed to establish the dependence of winter wheat yield on agroclimatic factors.

In all interphase periods of growth and development of plants of the studied varieties of winter wheat, a close connection between grain yield and weather and climatic conditions was revealed.  It should be noted that the closest connection was observed in the interphase period “exit of plants into the tube – earing”, and the weakest connection – in the period of “earing – full maturity of the grain”.  The coefficient of determination for the studied varieties of winter wheat in the interphase period “plant yield in the tube – earing” varies in the range of 0.997 -0.999 depending on the feeding variant.  This indicates that the variation in the yield of winter wheat grain by 99.97 – 99.99% is determined by the variation of weather and climatic conditions.

 

Keywords: yield, agroclimatic conditions; winter wheat; regression; correlation.

 

References:

  1. Barabash M. B., Korzh T. V. & Tatarchuk O. H. (2004) Doslidzhennia zmin ta kolyvan opadiv na rubezhi KhKh i KhKhI st. v umovakh poteplinnia hlobalnoho klimatu. Naukovi pratsi UkrNDHMI. 253. 92-
  2. Blyshchyk D. V., Polovyi A. M. & Feoktistov P. O. (2014) Blok dynamichnoi modeli formuvannia zymostiikosti roslynamy ozymoi pshenytsi na pivdni Ukrainy v zalezhnosti vid strokiv sivby. Problemы materyalnoi kulturы. Heohrafycheskye nauky. 273. 83-
  3. Vozhehova R. A. (2012) Adaptatsiia zemlerobstva stepovoi zony do umov pidvyshchennia posushlyvosti klimatu. URL: http://unt.org.ua/adaptats-ya-zemlerobstva-stepovo-zoni-do-umov-p-dvishchennya-posushlivost-kl-matu
  4. Vozhehova R. A. (2019) Napriamy adaptatsii haluzi roslynnytstva do rehionalnykh zmin klimatu. Klimatychni zminy ta silske hospodarstvo. Vyklyky dlia ahrarnoi nauky ta osvity. Tezy II Mizhnar. nauk.-prakt. konf., 10-12 kvitnia 2019 r. Kyiv – Mykolaiv – Kherson: DU NMTs «Ahroosvita», 6-8.
  5. Hrytsiuk P. M. (2015) Modeliuvannia vplyvu meteofaktoriv na vrozhainist ozymoi pshenytsi. Haluzeva, mizhhaluzeva ta rehionalna ekonomika. Vcheni zapysky. 12. 216-224.
  6. Hrytsiuk P. M. (2009) Prohnozuvannia vrozhainosti zernovykh kultur: osoblyvosti i metodyka. Vcheni zapysky [Kyivskyi natsionalnyi ekonomichnyi universytet im. Vadyma Hetmana]. 11. 294-300.
  7. Hrytsiuk P. M. & Bachyshyna L. D. (2016) Vplyv zminy klimatychnykh umov na dynamiku vrozhainosti zernovykh v Ukraini. Ekonomika Ukrainy. 6 (655). 68-75.
  8. Hrytsiuk P. M. & Bachyshyna L. D. (2015) Modeliuvannia vplyvu meteofaktoriv na urozhainist zernovykh kultur v rozrizi oblastei Ukrainy. Visnyk Khmelnytskoho natsionalnoho universytetu. Ekonomichni nauky. 1 (3). 184-
  9. Dmytrenko V. L. (2003) Adaptatsii melioratyvnoho zemlerobstva do pohody i klimatu. Visnyk ahrarnoi nauky. 2. 52-
  10. Kazakova I. (2016) Vplyv hlobalnykh zmin na gruntovi resursy ta silskohospodarske vyrobnytstvo. Agricultural and Resource Economics. 2 (1). 21-
  11. Kobets S. P. & Tesolkin O. I. (2018) Pidkhid do prohnozuvannia vrozhainosti ozymoi pshenytsi z urakhuvanniam vplyvu osnovnykh hidrometeorolohichnykh faktoriv. Hlobalni ta natsionalni problemy ekonomiky. 23. 701-
  12. Kobets S. P. & Tesolkin O. (2018) Pidkhid do prohnozuvannia vrozhainosti ozymoi pshenytsi z urakhuvanniam vplyvu osnovnykh hidrometeorolohichnykh faktoriv. Hlobalni ta natsionalni problemy ekonomiky. 23. 701-705.
  13. Kucherenko O. M., Khomenko L. O., Kovalyshyna H. M. & Kochmarskyi V. S. (2013) Vplyv zminy klimatu na osoblyvosti morfolohichnoho analizu pry otsintsi stanu perezymivli pshenytsi m΄yakoi ozymoi. Selektsiia i nasinnytstvo. 103. 107- DOI: 10.30835/2413-7510.2013.54075
  14. Liashenko V. V. & Marenych M. M. (2010) Vplyv strokiv sivby na produktyvnist posiviv pshenytsi ozymoi. Visnyk Poltavskoi derzhavnoi ahrarnoi akademii. 2. 46-
  15. Marenych M. M. (2019) Urozhainist zerna pshenytsi v umovakh zminy klimatu. Klimatychni zminy ta silske hospodarstvo. Vyklyky dlia ahrarnoi nauky ta osvity. Tezy II Mizhnar. nauk.-prakt. konf., 10-12 kvitnia 2019 r. Kyiv – Mykolaiv – Kherson: DU NMTs «Ahroosvita», 26-28.
  16. Prokopenko A. (2013) Yakshcho vzymku ne bude ekstremalnykh pohodnykh umov, to tsohorichnyi vrozhai zbizhzhia perevershyt torishnii. Zerno i khlib. 1. 6-8.
  17. Rudych O. O. (2018) Pryrodno-klimatychni umovy yak faktor ryzyku vyrobnytstva silskohospodarskoi produktsii v Ukraini. Stalyi rozvytok ekonomiky. 2 (39). С. 14-
  18. Rudnyk-Ivashchenko O. I. (2012) Osoblyvosti vyroshchuvannia ozymykh kultur za umov zmin klimatu. Sortovyvchennia ta okhorona prav na sorty roslyn. 2. 8-10.
  19. Symonenko O. I. (2016) Dynamichni ekonometrychni modeli prohnozuvannia vrozhainosti ozymoi pshenytsi na osnovi otsiniuvannia pryrodno-klimatychnykh kharakterystyk. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia: Ekonomika, ahrarnyi menedzhment, biznes. 363-372. URL : http://nbuv.gov.ua/UJRN/nvnau_econ_2016_249_43.
  20. Tarariko O. H., Ilienko T. V. & Kuchma T. L. (2016) Vplyv zmin klimatu na produktyvnist ta valovi zbory zernovykh kultur: analiz ta prohnoz. Ukrainskyi heohrafichnyi zhurnal. 1. 14-22. DOI: 15407/ugz2016.01.014.
  21. Tarariko O. H., Syrotenko O. V., Ilienko T. V. & Velychko V. A. (2012) Kosmichnyi monitorynh posushlyvykh yavyshch. Visnyk ahrarnoi nauky. 10. 16-
  22. Tarariko Yu. O., Chernokozynskyi A. V. & Saidak R. V. (2008) Vplyv ahrotekhnichnykh i ahrometeorolohichnykh faktoriv na produktyvnist ahroekosystem. Visnyk ahrarnoi nauky. 5. 64-67.
  23. Udova L. O., Prokopenko K. O. & Didkovska L. I. (2014) Vplyv zminy klimatu na rozvytok ahrarnoho vyrobnytstva. Ekonomika i prohnozuvannia. 3. 107-
  24. Gitay H., Suarez A., Watson R. T. & Dokken D. J. (eds). (2002) Climate Change and Biodiversity. IPCC Technical Paper V. Intergovernmental Panel on Climate Change. URL: https://archive.ipcc.ch/pdf/technical-papers/climate-changes-biodiversity-en.pdf.
  25. Hunt L.A. & Pararajasingham S. (1995) CROPSIM-wheat: a model describing the growth and development of wheat. Canadian journal of plant science. 75 (3). 619-632.
  26. Leonardis E.D., Savitch L.V., Huner N.P.A., Oquist G. & Grodzinski B. (2003) Daily photosynthetic and C-export patterns in winter wheat leaves during cold stress and acclimation. Physiolia Plantarum. 521-531.
  27. Martin P. N., Gent & Ido Seginer (2012) A carbohydrate supply and demand model of vegetative growth: response to temperature and light. Plant, Cell and Environment. 1274-1286.
  28. McMaster G. S. (1993) Existing wheat yield models. Distributed listing. Fort Collins: USDA – ARS Crops Research Lab, CO.
  29. Porter John R. & Semenov Mikhail A. (2005) Crop responses to climatic variation. Philos Trans R Soc Lond B Biol Sci. Nov 29; 360 (1463). 2021-2035. DOI: 10.1098/rstb.2005.1752.
  30. Ritchie J. T., Godwin D. C. & Otter-Nacke S. (1985) CERES Wheat. A simulation Model of Wheat growth and Development college Station. Texas: Texas. AM University Press.

Fedorchuk M., Kovalenko O., Havrish V., Chernova A., Hruban V. Energy evaluation of sorghum growing technology in the South of Mykolaiv region

UDC 633.17

 

Fedorchuk M.,

Kovalenko O.,

Havrish V.,

Chernova A.,

Hruban V.

 

In the conditions of a high drought of climate of the Nikolaev area and fluctuations of temperature on years the important direction of increase of productivity of arable land is cultivation of drought-resistant cultures and improvement of the technological receptions directed on creation of highly productive agrocenoses.

Industrial-scale cultivation of non-food energy crops for biofuels production is generally recognized as a positive step toward ensive enpreventing energy shortages and decreasing greenhouse gas emissions. As part comprehergy plan, its bioenergy industry is vigorously accelerating cellulosic ethanol fuel production and diversifying feedstock supplies to include new crops such as cassava and sweet sorghum. In 2020, ethanol yield  reached 4.0 million tons, a 90% increase from 2.1 million tons in 2015, according to the 13th 5-Year Plan for bioenergy

Sorghum is a crop that can withstand high temperatures and prolonged droughts: to consume a one kg of dry matter, it consumes almost 1.5 times less water than corn and 2 times less than cereals. Its value is also due to the versatility of use, the ability to give stable yields, the possibility of growing on unproductive soils.

Energy sorghum, including biomass and sweet type varieties, has recently gained favor as bioethanol feedstock amongst numerous candidate crops. Low input requirements, wide adaptability, and remarkable biological productivity confer better energy balance to sorghum as compared to other competing crops. Using current renewable energy technologies, soluble sugars and structural carbon compounds (cellulose and hemicellulose) in energy sorghum stems and leaves could be the most promising approach for the first and second generation ethanol production.

This article evaluates the energy efficiency of growing sugar and grain sorghum in the context of climate change.

Keywords: energy equivalent, energy efficiency coefficient, energy costs, grain sorghum, sweet sorghum, biofuel, energy efficiency.

 

References:

  1. Lan Tian Ren, Zu Xin Liu, Tong Yang Wei, Guang Hui Xie. (2012). Evaluation of energy input and output of sweet sorghum grown as a bioenergy crop on coastal saline-alkali land. Energy. 47. 166-173. URL: http://dx.doi.org/10.1016/j.energy.2012.09.024
  2. Ikoeva V.A., Okazova Z.P. Efficiency of cultivation of sweet sorghum for green fodder and silage in the steppe zone of the republic of north Ossetia-Alania. Modern problems of science and education. 2014, №5. URL: https://www.science-education.ru/en/article/view?id=14633
  3. Krzysztof Józef Jankowski, Bogdan Dubisa, Mateusz Mikołaj Sokólski, Dariusz Załuski, Piotr Bórawskia, Władysław Szempliński. (2020). Productivity and energy balance of maize and sorghum grown for biogas in a large-area farm in Poland: An 11-year field experiment. Industrial Crops & Products. 112326. https://doi.org/10.1016/j.indcrop.2020.112326.
  4. Iosvany López-Sandin, Guadalupe Gutiérrez-Soto, Adriana Gutiérrez-Díez, Nancy Medina-Herrera, Edgar Gutiérrez-Castorena1 and Francisco Zavala-García. Evaluation of the Use of Energy in the Production of Sweet Sorghum (Sorghum Bicolor (L.) Moench) Under Different Production Systems. Energies, 2019, 12, 1713; doi:10.3390/en12091713
  5. Su, Y.; Zhang, P.; Su, Y. An overview of biofuels policies and industrialization in the major biofuel producing countries. Sust. Energ. Rev. 2015, 50, 991‒1003.
  6. Rocha, A.; Araújo, A.; Carvalho, A.; Sepulveda, J. A. New Approach for Real Time Train Energy Efficiency Energies. 2018, 11, doi:10.3390/en11102660.
  7. Haciseferogullari, H.; Acaroglu, M.; Gezer, I. Determination of the energy balance of the sugar beet plant. Source. 2003, 25, 15‒22.
  8. Pervanchon, F.; Bockstaller, C.; Girardin, P. Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator. Syst. 2002, 72, 149‒172.
  9. Larnaudie, V.; Rochon, E.; Ferrari, M. D.; Lareo, C. Energy evaluation of fuel bioethanol production from sweet sorghum using very high gravity (VHG) conditions. Energ. 2016, 88, 280‒287.
  10. Mathur, S.; Umakanth, A. V.; Tonapi, V. A.; Sharma, R.; Sharma, M. K. Sweet sorghum as biofuel feedstock: recent advances and available resources. Biofuels. 2017, 10, 146.
  11. Bai, Y.; Luo, L.; van der Voet, E. Life cycle assessment of switchgrass-derived ethanol as transport fuel. The J. Life Cycle Assess. 2010, 15, 468‒477.
  12. Mishra, J. S.; Kumar, R.; Rao, S. S. Performance of sweet sorghum (Sorghum bicolor) cultivars as a source of green fodder under varying levels of nitrogen in semi-arid tropical India. Sugar Tech. 2017, 19, 532‒538.
  13. Cosedido, V.; Vacas, R.; Macarulla, B.; Gracia, M. P.; Igartua, E. Agronomic and digital phenotyping evaluation of sweet sorghum public varieties and F1 hybrids with potential for ethanol production in Maydica. 2013, 58, 42‒53.
  14. Barcelos, C. A.; Maeda, R. N.; Santa Anna, L. M.; Pereira, N. Sweet sorghum as a whole-crop feedstock for ethanol production. Biomass bioenergy 2016, 94, 46‒56.
  15. Bonin, C. L.; Heaton, E. A.; Cogdill, T. J.; Moore, K. J. Management of sweet sorghum for biomass Sugar tech. 2016, 18, 150‒159.
  16. Amaducci, S., Colauzzi, M., Battini, F., Fracasso, A., Perego, A., 2016. Effect of irrigation and nitrogen fertilization on the production of biogas from maize and sorghum in a water limited environment. J. Agron. 76, 54–65.
  17. Bioenerhetychna otsinka sorhovykh kultur /[V.L. Kurylo, O.V. Yalanskyi, V.L. Hamandii ta in.] . Zbirnyk naukovykh prats IBKITsB. 2012. Vyp.14. S. 554-558.
  18. Bioenerhetychna produktyvnist tsukrovoho sorho zalezhno vid umov azotnoho zhyvlennia / [V.V. Ivanina, A.O. Sypko, H.A. Sinchuk ta in.]. Bioenerhetyka. 2014. № 2. S. 25-27.
  19. Boiko M.O. Vplyv hustoty posivu ta strokiv sivby na produktyvnist hibrydiv sorho zernovoho v umovakh Pivdnia Ukrainy. Visnyk ahrarnoi nauky Prychornomoria. 2016. Vyp.3 (91). S.96-104.
  20. Tarariko Yu.O. Bioenerhetychne ahrarne vyrobnytstvo v Lisostepu Ukrainy. Visnyk ahrarnoi nauky. 2011. № 7. S. 9-13.
  21. Vakhrushev H.A., Antypenko L.N. Эnerhetycheskaia эffektyvnost tekhnolohyy proyzvodstva sorho / Tezysы dokladov na mezhdunarodnoi nauchno-praktycheskoi konferentsyy «Selektsyia, semenovodstvo, tekhnolohyia vozdelыvanyia y pererabotky sorho». Zernohrad, 1999. S. 24-25.
  22. Alabushev A.B., Antypenko L.N. Эnerhetycheskaia otsenka proyzvodstva sorhovыkh kultur. Zernovыe y kormovыe kulturы (selektsyia, semenovodstvo, tekhnolohyia vozdelыvanyia). Zernohrad, 2000. S. 4-6.
  23. Ivanina V. V., Sypko A. O., Sinchuk H. A Bioenerhetychna produktyvnist tsukrovoho sorho zalezhno vid umov azotnoho zhyvlennia. Bioenerhetyka. 2014. № 2. S. 25–27.
  24. Mesiachnыe y hodovыe summы vыpavshykh osadkov v Nykolaeve: veb-sait. URL: [http://www.pogodaiklimat.ru/history/33846_2.] (data zvernennia: 02.11.2020).
  25. Melike E.Bildirici Economic growth and biomass energy. Biomass and Bioenergy. Volume 50, March 2013, Pages 19-24.
  26. Anthony Turhollow; Robert Perlack; Laurence Eaton and others The updated billion-ton resource assessment. Biomass and Bioenergy, Volume 70, 2014; pp. 149-164. URL: [https://www.fs.usda.gov/treesearch/pubs/47693] (дата звернення: 02.11.2020).
  27. Мatthew W. Veal, Assistant Professor and Extension Specialist Mari S. Chinn, Associate Professor Matthew B. Whitfield Sweet Sorghum Production to Support Energy and Industrial Products. North Carolina Cooperative Extension. 2014 – 8 р. [http://content.ces.ncsu.edu/sweet-sorghum-production-to-support-energy-and-industrial-products].
  28. Todd Pfeiffe, Michael Montros Sweet Sorghum for Biofuel. University of Kentucky, URL: [https://www.uky.edu/ccd/sites/www.uky.edu.ccd/files/sorghumbiofuel.pdf] (дата звернення: 02.11.2020).
  29. Seied Naser Eshaghi Sardrood Effect of chemical fertilizers and bio-fertilizers application on some morpho-physiological characteristics of forage sorghum / Seied Naser Eshaghi Sardrood, Amin Bagheri Pirouz and Behzad Shokati. International journal of Agronomy and Plant Production. Vol., 4 (2), Pages 223 – 231, 2013 URL: [http://eprints.icrisat.ac.in/11527/1/IJAPP_4_2_223_231_2013.pdf] (дата звернення: 02.11.2020).

Manushkina T., Drobitko А., Kachanova T., Heraschenko O. Ecological features of No-till technology in the conditions of the Southern Steppe of Ukraine

UDC 631.4: 633

 

Manushkina T.,

Drobitko А.,

Kachanova T.,

Heraschenko O.

 

The effect of No-till technology on soil density, soil moisture reserves, soil microbiological activity, and crop yields was studied. It was found that the soil density under winter wheat according to No-till technology did not exceed the optimal index of 1.30 g/cm3 and it was 1.14-1.25 g/cm3 for the sowing period and it was 1.18-1.29 g/cm3 for the harvesting period. The moisture content in the soil was significantly higher according to No-till technology and it was amounted to up to 21.3-27.6 mm during the winter wheat sowing period and it was 22.4-27.4 mm during the harvest period, where as with traditional technology this indicator was 16.8-20.2 mm and 17.3-23.9 mm, respectively. The use of No-till technology in the cultivation of winter wheat contributed to an increase in the overall microbiological activity of the soil, the highest rate of decomposition of flax tissue in the soil was observed during the harvest period of 35.1up to 40.7 %, which was by 14.4-16.7% more than in the control period. The average yield of winter wheat using No-till technology for two years was 4.54 t / ha, yield of soybean was 2.24 t / ha, yield of sunflower was 2.71 t / ha. The increase in crop yield up to 14.3-22.9 % by No-till technology allowed us to draw a conclusion about optimizing soil fertility indicators in the climatic conditions of the southern Steppe zone of Ukraine in comparison with traditional intensive technologies. It was shown that the introduction of No-till technology would improve environmental processes in the soil, reduce the anthropogenic load on agroecosystems and the manifestation of erosion processes, increase crop yields and reduce energy costs for their cultivation.

Keywords: soil, No-till technology, soil density, soil moisture, fertility, yield.

References:

  1. Horban V. A. (2008) Spivvidnoshennia ekolohichnykh funktsii gruntiv ta yikh ekolohichnykh vlastyvostei. Gruntoznavstvo, № 1-2, S. 124–127.
  2. Pozniak S. (2017) Grunty v suchasnomu suspilstvi. Visnyk Lvivskoho universytetu. Seriia heohrafichna, Vypusk 51, S. 304–313.
  3. Hlobalnyi yndeks holoda: 1 mlrd liudei holodaet. Эlektronnyi resurs. BBC. 11.10.2010. URL: www.bbc.co.uk/russian/international/2010/10/ 101011_hunger_index.shtml
  4. Food Outlook. Global Market Analysis. FAO. June 2011. URL: http://www.fao.org/.docrep/014/ al978e/al978e00.pdf
  5. Kosolap M.P., Krotinov O.P. (2011) Systema zemlerobstva No-Till. Kyiv, 372 s.
  6. Medvediev V.V. (2010) Nulovyi obrobitok gruntu v Yevropeiskykh krainakh. Kharkiv: EDENA,  202 s.
  7. Hudz V.P., Prymak I.D., Budonnyi Yu. V., Tanchyk S. P. (2010) Zemlerobstvo. Kyiv: Tsentr uchbovoi literatury, 464 s.
  8. Ratoshniuk T.M., Ratoshniuk V.I., Martyniuk M. A. (2012) Ekoloho-ekonomichni problemy ratsionalnoho silskohospodarskoho zemlekorystuvannia. Stratehiia rozvytku Ukrainy. Ekonomika, Sotsiolohiia, Pravo. № 1, S. 211-216.
  9. Nadtochii P.P,. Myslyva T.M, Volvach F. V. (2010) Ekolohiia gruntu: monohrafiia. Zhytomyr: Ruta, 473 s.
  10. Yeshchenko V.O. (2013) No-Till tekhnolohiia: yii sohodennia ta maibutnie. Visnyk Umanskoho natsionalnoho universytetu sadivnytstva, № ½, S. 4-9.
  11. Bezuhlyi M., Havryliuk M., Adamchuk V. (2007) Poshuk obiektyvnoi otsinky system obrobitku hruntu v Ukraini. Ahrarnyi tyzhden. Ukraina, № 39, URL:http://a7d.com.ua/501-poshuk_obktivno_ocnki_sistem_obrobtku_ gruntu_v_ukran.html
  12. Volokh P. (2008) Naikrashchyi shliakh do minimalnoho obrobitku gruntu – ekolohichne zemlerobstvo. Tekhnika AP : Nauk.-tekhn. zhurnal, № 5, S. 5–9.
  13. Kozubenko O.S. (2006) Vplyv variantiv osnovnoho obrobitku gruntu na zapasy dostupnoi volohy pid posivamy tsukrovykh buriakiv, yachmeniu i kukurudzy. Ahrarna nauka i osvita XXI stolittia: Mater. mizhnar. nauk. konf. Uman, S.30-31.
  14. Kryzhanivskyi V.H. Shchilnist gruntu na posivakh horokhu, pshenytsi ozymoi ta buriakiv tsukrovykh zalezhno vid osnovnoho obrobitku. Zbirnyk naukovykh pratc` Umanskoho NUS. Uman. 2010. №.74. S.90–97.
  15. Zholobetskyi H. Vyrostyty rentabelnu soiu v Stepu realno. Agroexpert. 2019. № 135. C. 32–35.
  16. Yeshchenko V. O., Kopytko P.H., Kostohryz P.V., Opryshko V.P. (2014) Osnovy naukovykh doslidzhen v ahronomii: pidruchnyk / za red. V.O. Yeshchenko, Vinnytsia: Edelveis i K, 332s.

Dobrovolskyi A., Kovalenko O., Andreychenko L., Koloyanidi N. Influence of seeding methods on the duration of the growing season and productivity of chickpea varieties

UDC 635.657: 631.6

 

Dobrovolskyi A.,

Kovalenko O.,

Andreychenko L.,

Koloyanidi N.

 

The aim of this work was to study the duration of  growing season, as well as to study the features of  formation of productivity of chickpea varieties depending on the seeding method and weather conditions of southern Steppe of Ukraine. The experimental part of the study was conducted in 2008-2010 yrs and in 2017-2019 yrs in the fields of the Mykolaiv region, which were located in the southern Steppe of Ukraine. Soil cover of experimental plot is represented by chernozem southern. Object of  research were varieties of chickpeas: Rosanna, Pam’yat`, Triumph, Budzhak. The scheme of the experiment also included methods of seeding such as ordinary (15 cm) and wide-row (45 cm). Seeding rate: for solid crops 0.6 million for wide-row 0.4 million pieces of germinating seeds per 1 ha. The chickpea growing technology, with the exception of the elements that were studied, corresponded to the recommended one for the research area. The sown area of the plot of the first order is 75 m2, the accounting area is 50 m2. The frequency is three times, and the placement of sections is randomized. The research used generally accepted methods in crop production.

As a result of experimental studies and production testing of medium-ripened chickpea varieties, it was found that the duration of the growing season of plants and their productivity depended on the seeding methods. The longest growing season – 108–113 days was observed with a wide-row sowing method, and the shortest – with solid sowing crops (101–108 days). Correlation analysis showed a strong positive relationship between the duration of the growing season and the average daily air temperature during the growing season of chickpea (r = 0.89). The highest yield of chickpea varieties was formed in wide-row crops, while the increase in grain yield was 0.11 t/ha or 7.8% compared to solid crops. Precipitation and Sielianinov’s hydrothermal index (r = 0.73 and r = 0.75) had a great influence on the formation of the grain yield of chickpea, and the average daily air temperature (r = 0.80) had an effect on the accumulation of protein in the grain.

Keywords: chickpeas, meteorological conditions, growing season, productivity, variety, seeding method.

References:

  1. Bushulian, O. V. and Sichkar, V. I. (2009). Nut: henetyka, selektsiia, nasinnytstvo, tekhnolohiia vyroshchuvannia [Nut: genetics, selection, seed production, technology of cultivation]. Odessa: N. p. [in Ukrainian]
  2. Knights, E. I., Acikgoz, A., Warkentin, T., Bejiga, G., Yadav, S. S. and Sandhul, I. S. (2007). Area, Production, Distribution. In: S.S. Yadav, R.J. Redden, W. Chen, B. Sharma (ed.) Chickpea Breeding and Management. Trowbridge: Cromwell Press, 167-79
  3. Sichkar, V. I. and Bushulian, O. V. (2001). Tekhnolohiia vyroshchuvannia nutu v Ukraini. [Сhickpea growing technology in Ukraine]. Propozytsiia. 10, 42–43 [in Ukrainian]
  4. Gaur, P. M., Tripathi, S., Gowda, C. L. L., Ranga Rao, G. V., Sharma, H. C., Pande, S. and Sharma, M. (2010). Chickpea Seed Production Manual. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 28 p.
  5. Hadzalo, Ya. M., Kyrychenko, V. V., Dziubetskyi, B. V. (2016). Stratehiia innovatsiinoho rozvytku selektsii i nasinnytstva zernovykh kultur v Ukraini. [Strategy for innovative development of selection and seed production of grain crops in Ukraine]. Kyiv – Kharkiv – Dnipro. 32 р. [in Ukrainian]
  6. Hermantseva, N. Y. (2001). Byolohycheskye osobennosty, selektsyia y semenovodstvo nuta v zasushlyvom Povolzhe [Biological features, selection and seed production of chickpeas in the arid Volga region]. avtoref. dys. na soyskanye nauch. stepeny d-ra s.-kh. nauk : spets. 06.01.09 «Selektsyia y semenovodstvo» / Rossyiskaia akademyia selskokhoziaistvennyikh nauk. Penza, 54 р. [in Russian]
  7. Miguelez Frade, M. M. and Valenciano, J. B. (2005). Effect of sowing density on the yield and yield components of spring-sown irrigated chockpea (Cicer arietinum) grown in Spain. New Zealand Journal of Crop and Horticultural Science, 33, 367-371.
  8. Dospekhov, B. A. (1985). Metodika polevogo opyta s osnovami statisticheskoi obrabotki resultatov issledovaniy [Methodology of field experience with the basics of statistical processing of research results]. Moscow: Kolos. 353 р. [in Russian]
  9. Wolf, V. G. (1966). Statisticheskaya obrabotka opyitnyih dannyih [Statistical processing the experimental data]. Moscow: Kolos. 134 p. [in Russian]
  10. Metodyka provedennia ekspertyzy ta derzhavnoho vyprobuvannia sortiv roslyn zernovykh, krupianykh ta zernobobovykh kultur [The method of examination and state testing of varieties of plants of cereals and legumes]. (2003). Kyiv: N. p., 2, 3, р. 191–204. [in Ukrainian]

Pokoptseva L., Eremenko O., Todorova L., Nezhnova N. Formation of sunflower productivity of Euralis selection in the Southern Steppe of Ukraine

UDC 633.854.78(477)

 

L. Pokoptseva,

O. Eremenko,

L. Todorova,

N. Nezhnova

 

The article considers the peculiarities of the formation of productivity of sunflower of Euralis selection under the conditions of the southern Steppe of Ukraine.

The experiment was based on the southern black soil with the sowing of the following hybrids: Savannah, Niagara, Andromeda and Arcadia.

In eight days after the beginning of mass flowering, the morphological signs of the researched sunflower hybrids were established. It has been determined that stronger stems and larger diameters of the baskets were formed by the hybrid of the Savannah sunflower. The Niagara hybrid in terms of the stem diameter and basket diameter has been 1.12 times and 1.14 times, respectively, smaller than the Savannah hybrid. Hybrids of Andromeda and Arcadia occupied an intermediate value.

It should be noted that in terms of the plant height, the Niagara hybrid also has had the lowest values from all investigated sunflower hybrids by 25 – 36%.

The power of the assimilation apparatus is the main factor in the productivity of photosynthesis, which leads to an increase in quantitative and qualitative harvest indexes. So, in our research, the Savanna and Andromeda sunflower hybrids had the largest photosynthetic surface and by the area of the leaf surface significantly exceeded the Niagara hybrid by 36%.

One of the main structural units of the sunflower yield is the mass of seeds from one basket. On a background subzero intensity of phytomass forming by the Niagara sunflower hybrid, the index of the seed mass from one basket had a tendency to increase compared to the Arcadia and Savannah hybrids. But on quality indexes (weight of 1000 seeds and the grain-unit) the yield of this hybrid was formed less weighty. So, the index of mass of 1000 seeds of the Niagara hybrid was significantly lower than other hybrids by 28 – 61%. The Andromeda sunflower hybrid had the best values of the mass index of 1000 seeds from all the investigated hybrids. The mass of 1000 seeds of this hybrid was 68.3 g. The best value by the index of grain-unit was the Arcadia hybrid is 420.2 g / l.

At the density of standing of 48,000 plants / ha, the Andromeda sunflower hybrid had the highest yield (up to 0.27 t / ha).

For sunflower seeds of all investigated hybrids during realization of comparative estimation of research results, a ranked row has been established, which characterizes their best suitability for cultivation in the zone of the southern steppe of Ukraine. The Andromeda sunflower hybrid of the first rank =3.08 became optimal for growing in the zone of the southern steppe of Ukraine. The second rank is the Arcadia hybrid, which has been confirmed by the value of the objective function =3.83. The Savannah hybrid has had the third rank =3.99. The Niagara sunflower hybrid has shown the worst indexes over the years of research – fourth place with the value of =6.56.

Thus, taking into account the agrometeorological conditions of sunflower cultivation in the zone of the southern steppe of Ukraine, the genetic potential of hybrids and stability to adverse environmental factors, the Andromeda sunflower has become most adapted to the conditions of insufficient moisture and has provided better productivity and has formed the high seed quality.

Keywords: sunflower, hybrid, biological yield, quality, ranked range.

References:

  1. Kalenska S., Kalenskiy V., Kachura I.,  Kovalenko  (2014). Plant resources of Ukraine in solving of food and energy security. Rolnictwo, gospodarka, obszary wielskie – 10 lat w Unii Europelskiel, Warshawa: Wydawnictwo SGGW, 147-157.
  2. Gavrylyuk M. M., Salatenko V. N., Chehov A. V., Fedorchuk M. I. (2008). Olijni kultury v Ukrayini: navchalnyj posibnyk. K.: Osnova, 420.
  3. Lytun P. P., Kyrychenko V. V., Petrenkova V. P., Kolomacskaya V. R. (2007). Adaptyvnaya selekciya. Teoria i technologia na sovremennom etape: [monografia]. : Magda LTD, 264.
  4. Perarnaud, V., Raynal, N. (1991). Agrometeorologie. Meteor. Nation. Cours et Manuals, 183.
  5. Yeremenko O. A., Kalenska S. M., Kalytka V. V., Malkina V. M. (2017). Urozhajnist sonyashnyku zalezhno vid agrometeorologichnyh umov pivdennogo Stepu Ukrayiny. Agrobiologia, 2 (135), 123–130.
  6. Marenych M. M., Verevska O. V., Shkurko V. S. (2011). Prognozuvannya vrozhajnosti silskogospodarskyh kultur. Poltava: SIMON, 120.
  7. Polovyj A. M., Bozhko L. Yu. (2007) Dovgostrokovi agrometeorologichni prognozy. Odesa: TES, 292.
  8. Stepanenko S. M., Polovyj A. M., Shkolnyj E. P. (2011). Ocinka vplyvu klimatychnyh zmin na galuzi ekonomiky Ukrayiny: [monografiya] Odesa: Ekologiya, 696.
  9. Yeremenko O. A., Todorova L. V., Pokoptseva L. A. (2017). Vplyv pogodnyh umov na prohodzhennya ta tryvalist fenologichnyh faz rostu ta rozvytku olijnyh kultur. Tavrijskyj naukovyj visnyk, 99, 45-52.
  10. Zhujkov O.G., Burdyug O.O. (2019). Doslidzhennya produktyvnosti ta yakisnyh pokaznykiv gibrydiv sonyashnyku seredno-rannoyi grupy za riznyh texnologij vyroshhuvannya v umovax pivdennogo Stepu Ukrayiny. Tavrijskyj naukovyj visnyk, 109, 42 – 48.
  11. Pankovic D., Sakac Z., Kevresan S., Plesnicar M. (1999). Acclimation to long-term water deficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism. Journalof Experimental Botany, 330, 127-138.
  12. Kyrychenko V.V., Petrenkova V.P., Maklyak K.M., Borovska I.Yu. (2010). Rezultaty selekciyi sonyashnyku na stijkist do osnovnyh patogeniv. Selekciya i nasinnytstvo: mizhvid. temat. nauk. zb. UAAN, In-t roslynnytstva im. V.Ya. Yuryeva. Kharkiv, 98, 3–12.
  13. Depar, M.S., Baloch, M.J., Chacher, Q.-U. (2018). General and specific combining ability estimates for Morphological, yield and its attributes and seed traits in sunflower (Helianthus annuus) Pakistan Journal of Scientific and Industrial Research Series B: Biological Sciences, 61(3), 126-135.
  14. Ali, S. S., Manzoor, Z., Awan, T. H., Mehdi, S. S., (2006). Evaluation of Performance and Stability of Sunflower Genotypes Against Salinity Stress. The Journal of Animal and Plant Sciences, 16, 1-2, 47-51.
  15. Derzhavnyj reyestr sortiv roslyn, prydatnyh dlya vyroshhuvannya v Ukrayni u 2020 roci. URL: https://sops.gov.ua/reestr-sortiv-roslin
  16. Polyakov A. Y., Chehov A. V., Nykytchyn D. Y. (2005). Metodyka polevyh opytov po izucheniu agrotechnycheskych pryemov vozdelyvania podsolnechnika. Zaporozhe, 22.
  17. Rozhkov A. O., Puzik V. K., Kalenska S. M., Puzik L. M., Popov S. I., Muzafarov N. M., Buxalo V. Ya., Kryshtop Ye. A. (2016). Doslidna sprava v agronomiyi: navchalnyj posibnyk. Kharkiv: Majdan, Kn. 1, 300.
  18. Rozhkov A. O., Kalenska S. M., Puzik L. M., Muzafarov N. M., Buchalo V. Ya. (2016). Doslidna sprava v agronomiyi knyga druga: Statystychna obrobka rezultativ agronomichnych doslidzhen: navchalnyj posibnyk. Kharkiv, Kn. 2, 298.
  19. Ushkarenko V. O., Nikishenko V. L., Goloborodko S. P., Kokovixin S. V. (2008). Dyspersijnyj i korelyacijnyj analiz rezultativ polovych doslidiv: navchalnyj posibnyk. Kherson: Ajlant, 372.
  20. Yeremenko O.A., Pokoptseva L.A. (2017). Zastosuvannya metodu bagatokryterialnoyi optymizaciyi dlya vyboru optymalnogo gibrydu sonyashnyku za umov vyroshhuvannya u zoni Stepu. Visnyk Sumskogo nacionalnogo agrarnogo universytetu, 9 (34), 121 – 126.
  21. Pokoptseva L.A., Yeremenko O.A. (2017). Pobuduvannya ranzhyruvanogo ryadu dlya riznych gibrydiv sonyashnyku, vyroshhenych v umovax Stepu Ukrayiny. Visnyk agrarnoyi nauky Prychornomorya, 4 (96), 98-107.
  22. Zemlerobstvo: pidruchnyk (2010). : Centr uchbovoyi literatury, 464.
  23. Goncharenko I. V. (2004). Budova roslynnogo organizmu: navchalnyj posibnyk. Sumy: VTD Universytetska knyga, 200.
  24. Naukovi osnovy agropromyslovogo vyrobnytstva v zoni Stepu Ukrayiny. [za red. M. V. Zubecz]. K.: Agrarna nauka, 2004. 844.
  25. Gulyaev B. Y., Rozhko Y. Y., Rogachenko A. D. (1989). Fotosyntez, produkcyonnyj process y produktyvnost rastenyj. K.: Naukova dumka, 1989, 152.
  26. Dyakov A. B. (1988). Chystaya produktyvnost fotosynteza i ploshhad lystovoj poverxnosty razpolagayushyhsya po gustote posevov podsolnechnyka. texn. byul. VNYY maslychnych kultur, 4, 42 – 46.
  27. Borysenko V. V. (2013). Lystkova poverchnya ta fotosyntetychnyj potencial posivu sonyashnyku zalezhno vid umov vyroshhuvannya. Zbirnyk naukovych pracz Umanskogo nacionalnogo universytetu sadivnycztva. Uman, 83, 79-84.
  28. Kalenska S. M., Novytska N. V., Dzhemesyuk D. (2016). Formuvannya ploshhi lystkovoyi poverxni soyi pid vplyvom inokulyaciyi ta pidzhyvlennya. Visnyk Poltavskoyi derzhavnoyi agrarnoyi akademiyi. Poltava, 3, 6-10.
  29. Teplickij M. G. (1989). Mnogokriterialnyj vybor kompleksov tekhnicheskih sredstv dlya zhivotnovodstva. Tekhnika v selskom hozyajstve, 6, 25.
  30. Eberhart, S. A., Rassel, W. A. (1966). Stability parameters for comparing varieties. Crop Sciense, 6, 36-40.

Kramarenko S., Kramarenko A., Lugovoy S., Balan D., Zemoglyadchuk K. The effects of breed, sire and environmental factors on the birth and weaning weight of lambs

UDC 636.3.082 / 57.087.01

 

Kramarenko S.,

Kramarenko A.,

Lugovoy S.,

Balan D.,

Zemoglyadchuk K

 

The main goal of this study was to determine the effect of some important factors affecting the birth and weaning weight variability in lambs. The study was carried out on the basis of the Institute of Animal Husbandry of Steppe Regions named by M. F. Ivanov “Askania-Nova” – the National Scientific Agricultural Center in Sheep Breeding of NAAS.

The object of the study was the influence of genetic and non-genetic factors on the birth and weaning weight of lambs. Data from 2603 ewes was included in the analysis, where 3961 lambs were obtained during the five years of the research.

The reproductive qualities of the Ascanian fine-fleece ewes (AC) were evaluated by their matching with the sires of the following genotypes which are the Ascanian fine-fleece, the Australian merino (AM) and the half-bred rams (1/2AC + 1/2AM). The influence of the year of lambing, the age of ewes, the litter size, the sex of lambs on weight of lambs at birth and weaning was also studied. Data was tested using analysis of variance (ANOVA) with the GLM procedure of Minitab Release 13.1.

The significant effect on the weight of lambs at birth and weaning was established for all factors which were used in the analysis. The significant influence of the ram genotype on the birth weight of lambs was not established.

The population means (µ) were 4.047 ± 0.035 and 26.83 ± 0.38 kg for birth and weaning weight of lambs, respectively. In general, the periods of increase or decrease coincided for the birth/weaning weight of lambs. The birth weight of lambs did not depend on the genotype of the ram. According to the weaning weight of lambs the ewes, which were mated with the AM rams, gave birth to lambs, which were inferior to the population mean by 0.78 kg.

The birth weight of lambs was significantly higher than the population mean among eight years old ewes (101 g), while the youngest ewes, by the contrast, gave birth to lambs which were significantly lower than the population mean (by 155 g). As for the weaning weight of lambs, middle-aged ewes (5-6 years old) gave birth to lambs which significantly exceeded the population mean by 0.85-1.06 kg.

The weight of singles was significantly higher than the population mean at birth (561 g) and at weaning (1.89 kg). The weaning weight was significantly lower by 0.71 kg for ewes lambing twins. The ram lambs significantly exceeded the ewe lambs by 74 g at birth and by 0.66 kg at weaning.

Only for a ram № 519 it is possible to state high prepotency according to the potential of increasing the weight of lambs both at birth and at weaning. In total, for 20 sires, a significantly relationship between their LS-estimates of birth and weaning weight of lambs was not established (r = 0.293; n = 20; p = 0.209).

Keywords: birth and weaning weight of lambs; ram genotype; year of lambing; age of ewes; litter size (type of birth); sex of a lamb; the Ascanian fine-fleece breed.

References:

  1. Rasali, D. P., Shrestha, J. N. B., & Crow, G. H. (2006). Development of composite sheep breeds in the world: A review. Canadian Journal of Animal Science, 86(1), 1-24. https://doi.org/10.4141/A05-073
  2. Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Neto, L. R. P., San Cristobal, M., … & Paiva, S. (2012). Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol, 10(2), e1001258. https://doi.org/10.1371/journal.pbio.1001258
  3. Assan, N., 2020. Effect of genetic and non-genetic factors on growth traits in goats and sheep production. Scientific Journal of Zoology, 9(1), 106-122.
  4. Assan, N., & Makuza, S. M. (2005). The effect of non-genetic factors on birth weight and weaning weight in three sheep breeds of Zimbabwe. Asian-australasian journal of animal sciences, 18(2), 151-157. https://doi.org/10.5713/ajas.2005.151
  5. Eskandarinasab, M., Ghafouri-Kesbi, F., & Abbasi, M. A. (2010). Different models for evaluation of growth traits and Kleiber ratio in an experimental flock of Iranian fat-tailed Afshari sheep. Journal of Animal Breeding and Genetics, 127(1), 26-33. https://doi.org/10.1111/j.1439-0388.2008.00789.x
  6. Vesely, J. A., & Peters, H. F. (1964). The effects of breed and certain environmental factors on birth and weaning traits of range sheep. Canadian Journal of Animal Science, 44(2), 215-219. https://doi.org/10.4141/cjas64-033
  7. Saghi, D. A., Khadivi, H., Navidzadeh, M., & Nikbakhti, M. (2007). Study on influence of environmental effect on birth weight, weaning weight and daily growth of Baluchi sheep. Pakistan Journal of Nutrition, 6(5), 436-437. https://doi.org/10.3923/pjn.2007.436.437
  8. Sidwell, G. M., & Miller, L. R. (1971). Production in some pure breeds of sheep and their crosses. II. Birth weights and weaning weights of lambs. Journal of Animal Science, 32(6), 1090-1094. https://doi.org/10.2527/jas1971.3261090x
  9. Eltawil, E. A., Hazel, L. N., Sidwell, G. M., & Terrill, C. E. (1970). Evaluation of environmental factors affecting birth, weaning and yearling traits in Navajo sheep. Journal of Animal Science, 31(5), 823-827. https://doi.org/10.2527/jas1970.315823x
  10. Lavvaf, A., & Noshary, A. (2008). Estimation of genetic parameters and environmental factors on early growth traits for Lori breed sheep using single trait animal model. Pakistan Journal of Biological Sciences, 11(1), 74-79. https://doi.org/10.3923/pjbs.2008.74.79
  11. Teklebrhan, T., Urge, M., Mekasha, Y., & Baissa, M. (2014). Pre-weaning growth performance of crossbred lambs (Dorper × indigenous sheep breeds) under semi-intensive management in eastern Ethiopia. Tropical Animal Health and Production, 46(2), 455-460. https://doi.org/10.1007/s11250-013-0513-1
  12. Sánchez-Dávila, F., Bernal-Barragán, H., Padilla-Rivas, G., del Bosque-González, A. S., Vázquez-Armijo, J. F., & Ledezma-Torres, R. A. (2015). Environmental factors and ram influence litter size, birth, and weaning weight in Saint Croix hair sheep under semi-arid conditions in Mexico. Tropical Animal Health and Production, 47(5), 825-831. https://doi.org/10.1007/s11250-015-0795-6
  13. Mallick, P. K., Pourouchottamane, R., Rajapandi, S., Thirumaran, S. M. K., Venkataraman, R., Nagarajan, G., … & Rajendiran, A. S. (2017). Influence of genetic and non genetic factors on growth traits of Bharat Merino sheep in sub-temperate climate of Kodai hills of Tamil Nadu, India. Indian Journal of Animal Research, 51(2), 365-370. https://doi.org/10.18805/ijar.10979
  14. Pokhyl, V. I., & Mykolaychuk, L. P. (2019). Age-related variability of the woollen coat of Romanivska sheep breed. Theoretical and Applied Veterinary Medicine, 7(3), 172-176. (In Ukrainian). https://doi.org/10.32819/2019.71031
  15. Vdovychenko, Yu., & Zharuk, P. (2019). Genetic resources of sheep in Ukraine. Bulletin of Agricultural Science, 97(5), 38-44. (In Ukrainian). https://doi.org/10.31073/agrovisnyk201905-04
  16. Voitenko, S. L., Porkhun, M. G., Sydorenko, O. V., & Ilnytska, T. Y. (2019). Genetic resources of agricultural animals of Ukraine at the beginning of the third millennium. Animal Breeding and Genetics, 58, 110-119. (In Ukrainian). https://doi.org/10.31073/abg.58.15
  17. Petrović, M. P., Caro Petrović, V., Ružić-Muslić, D., Maksimović, N., Petrović, M. M., Ilić, Z. Z., & Stojković, J. (2015). Effect of genetic and environmental factors on the phenotype characteristics of lambs. Biotechnology in Animal Husbandry, 31(2), 223-233. https://doi.org/10.2298/BAH1502223P
  18. Kramarenko, A. S., Kramarenko, S. S., Lugovoy, S. I., & Yulevich, O. I. (2020). Analysis of the influence of genetic and non-genetic factors on the birth weight and weaning weight of lambs. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural sciences, 22(93), 14-21. https://doi.org/10.32718/nvlvet-a9303
  19. Ryan, B.F., Joiner, B.L., & Cryer, J.D. (2012). MINITAB Handbook: Update for release 16. – Pacific Grove, CA, USA: Brooks/Cole Publishing Co., 560 p.
  20. Hight, G. K., & Jury, K. E. (1970). Hill country sheep production: II. Lamb mortality and birth weights in Romney and Border Leicester × Romney flocks. New Zealand Journal of Agricultural Research, 13(4), 735-752. https://doi.org/10.1080/00288233.1970.10430507
  21. Benyi, K., Norris, D., Karbo, N., & Kgomo, K. A. (2006). Effects of genetic and environmental factors on pre-weaning and post-weaning growth in West African crossbred sheep. Tropical Animal Health and Production, 38(7-8), 547-554. https://doi.org/10.1007/s11250-006-4416-2
  22. Morris, C. A., Hickey, S. M., & Clarke, J. N. (2000). Genetic and environmental factors affecting lamb survival at birth and through to weaning. New Zealand Journal of Agricultural Research, 43(4), 515-524. https://doi.org/10.1080/00288233.2000.9513448
  23. Gama, L. T., Dickerson, G. E., Young, L. D., & Leymaster, K. A. (1991). Effects of breed, heterosis, age of dam, litter size, and birth weight on lamb mortality. Journal of Animal Science, 69(7), 2727-2743. https://doi.org/10.2527/1991.6972727x
  24. Vesely, J. A., & Slen, S. B. (1961). Heritabilities of weaning weight, yearling weight, and clean fleece weight in range Romnelet sheep. Canadian Journal of Animal Science, 41(1), 109-114. https://doi.org/10.4141/cjas61-014
  25. Hazel, L. N., & Terrill, C. E. (1945). Effects of some environmental factors on weanling traits of range Rambouillet lambs. Journal of Animal Science, 4(4), 331-341. https://doi.org/10.2527/jas1945.44331x
  26. Hazel, L. N., & Terrill, C. E. (1946). Effects of some environmental factors on weanling traits of range Columbia, Corriedale and Targhee lambs. Journal of Animal Science, 5(3), 318-325. https://doi.org/10.2527/jas1946.53318x
  27. Ploumi, K., & Emmanouilidis, P. (1999). Lamb and milk production traits of Serrai sheep in Greece. Small Ruminant Research, 33(3), 289-292. https://doi.org/10.1016/S0921-4488(99)00027-9
  28. Bathaei, S. S., & Leroy, P. L. (1994). Lamb growth performance and factors affecting body weight of Iranian fat-tailed Mehraban breed of sheep. Revue d’Elevage et de Medecine Veterinaire des pays Tropicaux, 47(1), 113-116. https://doi.org/10.19182/remvt.9122
  29. Yilmaz, O. S. M. A. N., Denk, H., & Bayram, D. A. V. U. T. (2007). Effects of lambing season, sex and birth type on growth performance in Norduz lambs. Small Ruminant Research, 68(3), 336-339.https://doi.org/10.1016/j.smallrumres.2005.11.013
  30. Selaive-Villarroel, A. B., Maciel, M. B., & Oliveira, N. M. D. (2008). Effects of weaning age and weight on lamb growth rate of Morada Nova breed raised in a tropical extensive production system. Ciência Rural, 38(3), 784-788. https://doi.org/10.1590/S0103-84782008000300030
  31. Alsheikh, S. (2005). Effect of inbreeding on birth and weaning weights and lamb mortality in a flock of Egyptian Barki sheep. ISAH-Warsaw: Poland, 1, 187-191.

Karatieieva E., Lesik I. Assessment of the exterior of the main measurements of the physique of heifers depending on their origin

UDC636.2.034.061.082

 

Karatieieva E.

Lesik I.

 

Productive and breeding qualities of animals are determined by their exterior-constitutional type. Only well-developed, healthy animals are capable of high performance and long-term use. In the breeding practice of dairy cattle breeding, considerable attention is paid to the assessment and selection of animals according to the external forms and proportions of the physique. After all, the structure of the animal’s body first of all makes it possible to have an idea of the expression of pedigree traits and the level of milk productivity, the state of health of the animal.

It has been established that crossbreeding of domestic breeds with bulls of Holstein, Red Danish and other breeds and an increase in conditional blood level for these breeds improves the exterior of cows towards a greater expression of the milky type of body structure, increases individual height and latitude measurements, body indices, total animal size, development, proportionality, strength.

In order to objectively characterize the constitution of animals in cattle, it is necessary, first of all, to have quantitative indicators of its assessment, what are the measurements of the exterior, the type of structure of the animal’s body. Therefore, most research scientists note that the exterior of cows is largely determined by genetic factors: belonging to the breed, type, line, family, origin with the father and is formed in the process of ontogenetic development under the influence of environmental factors. And the exterior parameters of cows should be taken into account, first of all, in the formation of the pedigree core, the group of cows for the reproduction of bulls, the selection of cows for milking.

A number of foreign scientists have proved that the dairy industry is faced with the unique task of constantly improving the functionality of dairy cows to meet the needs of future production and reproduction. The basis of the heritage is the selection of the best animals according to the indicators of the exterior and structure of the animal’s body. As a rule, constitutional features are important in improving dairy cattle. Functional signs that influence or contribute to longevity and high productivity of dairy cows are the good development of the udder, the degree of development and the correct setting of the limbs, measurements of the chest and abdominal parts of the body, croup and lower back. The relationship between these breeding traits with indicators of milk production and reproduction may be different for different breeds. And it may matter for the use of these traits in various dairy cattle breeding programs.

Taking into account the above results of research by various authors, the aim of our research was to study the influence of individual genetic factors, namely, conditional blood count according to Angler and Red Danish breeds, on the exterior of red steppe calf heifers at different age periods.

Given the importance of the type of body structure of animals, both from the side of selection and technological purpose, we carried out a comparative analysis of the main linear measurements of the physique of cattle of the red steppe breed and their crosses with 1/4 of the blood level according to Angler and red Danish cattle. Thus, studies of the exterior of heifers of different pedigree combinations confirm that an increase in conditional blood count by the Red Danish and Angler breeds helps to improve the indicators of the exterior of the heifers towards a greater expression of the milky type of body structure, increase individual height and latitude measurements, the overall size and proportionality of the body structure of animals. And the obtained results give grounds to assert that local heifers with 1/4 blood level in red Danish cattle significantly differ in the degree of development of linear measurements of the body structure from peers of the purebred and local group 3 / 4ES × 1/4 Ang.

Key words: exterior, body measurements, productive longevity, Angler breed, Danish red breed, conditional blood.

 

References:

  1. Alekseeva, E. I., Sukhanova, S. F., & Leshhuk, T. L. (2017). S ravnitel`naya kharakteristika e`kster`era korov myasnogo napravleniya produktivnosti. Vestnik Ul`yanovskoj gosudarstvennoj sel`skokhozyajstvennoj akademii, (4 (40)), 98-102. DOI: 10.18286/1816-45-2017-4-98-102
  2. Burkat, V. P., Polupan, Yu. P., & Yovenko, I. V. (2004). Liniina otsinka koriv za typom. K.: Ahrarna nauka, 88, 148.
  3. Siratskyi, Y. Z., Danylkiv, Ya. N., & Danylkiv, O. M. (2001). Eksterier molochnykh koriv: perspektyvy otsinky i selektsii. K.: Naukovyi svit.
  4. Ivashkov, A. I., & Ry`zhkova, L. Yu. (2006). Osobennosti rosta vy`sokoproduktivny`kh korov. Vestnik Rossijskogo gosudarstvennogo agrarnogo zaochnogo universiteta, (1), 121-122.
  5. Iliashenko, H. D. (2014). Vplyv okremykh henetychnykh chynnykiv na eksterier koriv ta yoho zviazok z molochnoiu produktyvnistiu. Naukovyi visnyk Askaniia-Nova, (7), 140-147.
  6. Karatieieva, O. I. (2012). Rozvytok liniinykh promiriv khudoby riznykh porid molochnoho napriamu produktyvnosti. Tavriiskyi naukovyi visnyk, (78), 72-76.
  7. Karlova, L. V. (2013). Osoblyvosti eksterieru koriv ukrainskoi chervonoi molochnoi porody riznoho henetychnoho pokhodzhennia. Naukovo-tekhnichnyi biuleten, (110), 59-66.
  8. Lakin, G.F. (1990). Biometrics. M .: Higher. Sc., 352.
  9. Pelekhatyi, M. S., & Kochuk-Yashchenko, O. A. (2013). Liniina otsinka eksterieru koriv ukrainskykh chorno-riaboi i chervono-riaboi molochnykh porid ta yii vplyv na yikh molochnu produktyvnist v analohichnykh umovakh. Visnyk Zhytomyrskoho natsionalnoho ahroekolohichnoho universytetu, (2 (1)), 154-169.
  10. Pishchan, I. S. (2016). Eksterierno-konstytutsiini osoblyvosti shvitskykh koriv riznoho ekolohichnoho pokhodzhennia. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia: Tekhnolohiia vyrobnytstva i pererobky produktsii tvarynnytstva, (236), 229-244.
  11. Plohinskij, N. A. (1961). biometrija. Izd-vo SO AN SSR.
  12. Polupan, Yu. P. (2016). Ontohenetychni osoblyvosti formuvannia eksterieru molodniaku. Rozvedennia i henetyka tvaryn, (52), 63-81.
  13. Prudnikov, V. H., Prudnykov, V. H., Dydykina, A. I., & Dydykyna, A. Y. (2017). Eksterierni pokaznyky koriv aberdyn-anhuskoi i sharolezkoi porid vitchyznianoho pokhodzhennia zalezhno vid zhyvoi masy. Zbirnyk naukovykh prats Vinnytskoho natsionalnoho ahrarnoho universytetu «Ahrarna nauka ta kharchovi tekhnolohii», (1(95)), 142-147.
  14. Khmelnychyi, L. M., Vechёrka, V. V., & Vechorka, V. V. (2014). Otsenka korov ukraynskoi krasno-pestroi molochnoi porodы v sootnosytelnoi yzmenchyvosty promerov y yndeksov teloslozhenyia. Henetyka y razvedenye zhyvotnykh, (4), 20-24.
  15. Shcherbatyi, Z. Ye., Bodnar, P. V., & Kropyvka, Yu. H. (2016). Dynamika rostu zhyvoi masy ta eksterierno–konstytutsiini osoblyvosti koriv ukrainskoi chorno–riaboi molochnoi porody riznykh typiv konstytutsii. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni SZ Gzhytskoho. Seriia: Silskohospodarski nauky, (18,№ 2), 281-286. DOI:10.15421/nvlvet6761
  16. Almeida T. P., Kern E. L., Daltro D. D. S., Braccini Neto J., McManus C., Thaler Neto A., & Cobuci, J. A. Genetic associations between reproductive and linear-type traits of Holstein cows in Brazil. Revista Brasileira de Zootecnia, 46(2), 91-98. DOI: 10.2298/BAH1202195G
  17. Getu, A., & Campus, S. (2015). The role of conformational traits on dairy cattle production and their longevities. Open Access Library Journal, 2(03), 1. DOI: 10.4236 / oalib.1101342
  18. Kadarmideen, H. N. (2004). Genetic correlations among body condition score, somatic cell score, milk production, fertility and conformation traits in dairy cows. Animal science, 79(2), 191-201. DOI: 10.1017/S1357729800090056
  19. Otwinowska-Mindur, A., Ptak, E., & Jagusiak, W. (2016). Genetic relationship between lactation persistency and conformation traits in Polish Holstein-Friesian cow population. Czech J. Anim. Sci, 61(2), 75-81. DOI: 10.17221/8730-CJAS
  20. Sawa, A., Bogucki, M., Krężel-Czopek, S., & Neja, W. (2013). Relationship between conformation traits and lifetime production efficiency of cows. ISRN veterinary science, 2013. DOI: 10.1155/2013/124690
  21. van der Heide, E. M. M., Veerkamp, R. F., van Pelt, M. L., Kamphuis, C., & Ducro, B. J. (2020). Predicting survival in dairy cattle by combining genomic breeding values and phenotypic information. Journal of dairy science, 103(1), 556-571. DOI 10.3168/jds.2019-16626
  22. Zavadilová, L., Němcová, E., & Štípková, M. (2011). Effect of type traits on functional longevity of Czech Holstein cows estimated from a Cox proportional hazards model. Journal of Dairy Science, 94(8), 4090-4099. DOI: 10.3168/jds.2010-3684

Vakhonina L., Potryvaieva N., Sadovyi О. Fine elastic circular inclusion in the area of harmonic vibrations of an unlimited body under smooth contact

UDC 539. 3

 

Vakhonina L.

Potryvaieva N.

Sadovyi О.

Modern problems of dynamic fracture mechanics, improvement of means of non-destructive testing and flaw detection require further development and improvement of methods for solving problems of dynamic interaction of thin-walled inclusions with the environment. An important case of inclusions is a circular (disc-shaped) inclusion. This is primarily due to the fact that thin disc-shaped reinforcements are quite common in machine parts and building structures. Thin inclusions are not only stress concentrators, but are also used as fillers in composites. When creating composite materials, the matrix is often filled with coin-like reinforcing elements of high rigidity. Therefore, it is inclusions of this shape that have always been given a lot of attention, which requires the solution of problems on the stress-strain state of bodies with inhomogeneities such as thin inclusions.

Methodology. The solution method is based on the representation of displacements in the matrix through discontinuous solutions of the Lamé equations for harmonic vibrations. This made it possible to reduce the problem to Fredholm integral equations of the second kind with respect to functions associated with jumps of normal stress and radial displacement to included ones. After the realization of the boundary conditions on the sides of the inclusion, a system of singular integral equations is obtained to determine these jumps.

Results. In the case of real materials, taking into account the elasticity of the inclusions significantly affects the value of the stress intensity factors. The values of the stress intensity factors obtained taking into account the elasticity for some materials may exceed, and for some be much smaller than those corresponding to the absolutely rigid inclusion. Taking into account the stiffness of the inclusion also significantly changes the dependence of the voltage intensity coefficients on the wave number. It becomes more complex with many highs and lows. Moreover, the maximum values of voltage intensity factors can be several times higher than the corresponding values for absolutely rigid inclusions.

 Originality. Determination of problems about harmonious communication of non-interconnected body with disk-like inclusions in the minds of smooth contact. Previously, such a task was tied for an absolutely hard inclusionю.

Practical value. The data obtained can be used in the calculations of machine parts and structures in which it is necessary to take into account elastic inclusions.

Key words: elastic inclusions, cylindrical waves, matrix, stress intensity factor

 

References:

  1. Litvin O.V. Popov V.G. (2002) Izgibnye kolebanija tonkogo uprugogo vkljuchenija v neogranichennoj srede pri vzaimodejstvii s uprugimi volnami.  Teoreticheskaja i prikladnaja mehanika. Vip.38. S. 131-140.
  2. Kit H.S., Kunets Ya. I., Yemets V.F. (1999) Elastodynamics scattering from a thinwallad inclusions of low rigidity.International Journal of Engineering Science. 37. P. 331-343.
  3. Kit G.S., Kunec V.V., Mihas’kiv V.V. (2004) Vzaimodejstvie stacionarnoj volny s tonkim diskoobraznym vkljucheniem maloj zhestkosti. Izvestija RAN.   Mehanika tverdogo tela.  №5. S. 83-89.
  4. My`xas`kiv V.V., Kaly`nyak O.I. (2005) Nestacionarni zburennya try`vy`mirnoyi pruzhnoyi matry`ci z zhorstky`m dy`skovy`m vklyuchennyam. Fizy`ko–ximichna mexanika materialiv. T. 41, # 2.  S. 7-15.
  5. Vahonina L.V., Popov V.G. (2002) Osesimmetrichnye kolebanija prostranstva s tonkim zhestkim krugovym vkljucheniem // Teorija i praktika processov izmel’chenija, razdelenija, smeshenija i uplotnenija. Odessa: OGMA.  Vyp. 9. S. 28-34.
  6. Vahonina L.V., Popov V.G. (2003) Vzaimodejstvie uprugih voln s tonkim zhestkim krugovym vkljucheniem v sluchae gladkogo kontakta. Teoreticheskaja i prikladnaja mehanika.    Vyp. 38. S. 158-166.
  7. Popov G.Ja. (1999) Postroenie razryvnyh reshenij differencial’nyh uravnenij teorii uprugosti dlja sloistoj sredy s mezhfaznymi defektami. Doklady RAN. T.364, № 6. S.769-773.
  8. Kit G.S., Mihas’kiv V.V., Haj O.M. (2002) Analiz ustanovivshihsja kolebanij ploskogo absoljutno zhestkogo vkljuchenija v trehmernom uprugom tele metodom granichnyh jelementov. Prikladnaja matematika i mehanika. T. 66, Vyp. 5. S. 855-863.
  9. Gradshtejn I.S., Ryzhik I.M. (2011) Tablicy integralov, summ rjadov i proizvedenij. M. 1108s.
  10. Rakhmanov Evguenii A. (2016) Orthogonal Polynomials Walter De Gruyter Incorporated. 510 с.
  11. Suetin P.K.(2005) Klasicheskie ortogonal’nie mnogochleny – 3-e izd., pererab. i dop. M.: Fizmat. 480s.
  12. Zemanian A.H. (2010) Distribution Theory and Transform Analysis: An Introduction to Generalized Functions, with Applications (Dover Books on Mathematics). 400 с.
  13. My`xas`kiv V.V., Kunecz` Ya.I., Mishhenko V.O. (2003) Napruzhennya u try`vy`mirnomu tili z tonky`m podatly`vy`m vklyuchennyam za frontom impul`sny`x xvy`l`.  Fizy`ko–ximichna mexanika materialiv.  T. 39, # 3.  S. 63–68.

Antipova L. Formation of the alfalfa variety productivity for hay in the steppe of Southern Ukraine

UDC 633.31

 

 Antipova L.

 

The aim of the study – determining the influence of weather conditions on the formation of the harvest of alfalfa varieties on hay under conditions of natural moisture in the southern steppe of Ukraine to identify the most drought-adapted varieties valuable high-protein grass.

Research results. It is established that alfalfa plants of the second year of life (and use) provide higher productivity compared to the first and third and fourth years of life. On average for four years of use (2015-2018), the highest yield of hay in arid conditions on the southern chernozems is provided by varieties of alfalfa Vavilovka 2 (increase of 0.33 t / ha or 11.7% to the standard variety Nadezhda, accepted for control , the yield of which was 2.83 t / ha). Also noteworthy are the varieties Nasoloda, Veselka and Lyuba (yield increase of 10.2, 9.3 and 8.6%, respectively, compared to the control). These varieties use the resource potential of moisture more efficiently compared to the control variety.Slightly higher against control plants is the productivity of alfalfa varieties Regina, Unitro, Laska, for the cultivation of which the increase in hay yield was 6.3, 5.7, 5.5% to control. In the first year of life (and use) at 1ºC effective air temperatures above + 5ºC formed leaf-stem mass for hay, on average by varieties, 1.76 kg, and in the second, third, fourth years of life-3.96, 3.52, 3.46 kg, respectively. On average, over four years of use, at 1ºC of effective air temperatures, the most hay of the Vavilovka 2 variety was harvested – 3.32 kg, which is 0.37 kg, or 12.5% ​​more than in the control (2.95 kg). In the varieties Nasoloda, Veselka and Lyuba this indicator increased by 10.8, 10.0 and 9.1%, respectively. In the first year of life (and use) on 1 mm of precipitation and productive moisture of 0-100 cm of a layer of soil the leaf-stem weight for preparation of 7,41 kg of hay on the average on grades is formed, and in the second, third, fourth years-18.64, 14.59, 13.99 kg / 1 mm of water, respectively. 1 mm of available precipitation moisture was collected and most of the hay of the Vavilovka 2 variety was collected from the soil – 14.29 kg, which is 1.58 kg or 12.4% more than in the control (12.71 kg / 1 mm of moisture). In the varieties Nasoloda, Veselka and Lyuba, this figure increased by 10.6, 9.7 and 8.8%, respectively.

Conclusions. Productivity of alfalfa plants significantly depends on weather conditions of a year, a grade, life expectancy. On average for four years of life and use, the highest yield of hay was provided by the alfalfa variety Vavilovka 2 (increase of 0.33 t / ha or 11.7% to the standard variety Nadezhda, the yield of which was 2.83 t / ha). Higher productivity against control is formed by varieties Nasoloda, Veselka and Lyuba (yield increase by 10.2, 9.3 and 8.6%, respectively).

Keywords: alfalfa, variety, weather conditions, hay, productivity.

 

References:

  1. Antipova L.K., Tsurkan N.V., Adamovich A.M., Poisha L.A. Perennial grasses – an important component of organic farming and fodder production. Bulletin of Agrarian Science of the Black Sea Coast. 2018. Vip. 4. pp. 35-41.
  2. Petrichenko V.F., Kvitko G.P. Lucerne with new qualities for cultivated pastures. Kyiv: Agrarian Science, 2010. 96 p.
  3. Chornolata L.P, Likhach S.M, Pirin N.I, Pogorila L.G., Berezhnyuk N.A. Characteristics of green mass of alfalfa sowing various slopes carried out in the budding phase. Feed and feed production. 2019. Vip. 87. P.114-120.
  4. Tsurkan N.V., Cherven I.I., Antipova L.K. Marketing market research of perennial herbs / Proceedings of the II International Scientific and Practical Internet Conference “Modern Problems of Agroecology”. Mykolaiv: Mykolaiv DSDS IZZ, 2016. P. 80.
  5. Nazarenko Yu. Your niche: how to make money on alfalfa. Source: Agravery.com https: //agravery.com/uk/posts/show/svoa-nisa-ak-zarobiti-na-lucerni
  6. Antipova L.K. Yield of alfalfa hay depending on weather conditions and ristregulating drug Emistim S. Bulletin of Agrarian Science of the Black Sea Coast. 2020. Vip. 1. pp. 43-49. URL: https://visnyk.mnau.edu.ua/n105v1r2020antipova/
  7. Babenko S., Titareva O. Alfalfa hay: advantages and disadvantages. Livestock. Veterinary medicine. 2019. №12. Pp. 52-54.
  8. Kovalenko V.P. Economic efficiency of high-yielding agrophytocenoses of perennial legumes. [Electronic resource] – Access mode: http://journals.nubip.edu.ua/index.php/Economica/article/view/7350
  9. Kovtun K.P., Veklenko Y. A., Kopaygorodskaya G.O. Chemical composition and quality of fodder of degenerate old-sown meadow grass with different ways of their improvement in the Forest-Steppe of the Right Bank. Feed and feed production. 2016. Iss. 82. pp. 204-210.
  10. Petrichenko V.F., Hetman N. Y. Factors for increasing the productivity of agrophytocenoses of perennial legumes in the Forest-Steppe Right Bank. Feed and feed production. 2017. № 84. pp. 3–10.
  11. Gorensky V.M. Correlation-regression analysis of elements of seed and fodder productivity of alfalfa. URL: http://www.tnv-agro.ksauniv.ks.ua/archives/90_2015/8.pdf
  12. Dospekhov B.A. Methods of field experience – 5th ed., Ext. and rework. Moscow: Agropromizdat, 1985. 351 p.
  13. Yeshchenko V.O., Kopytko P.G., Opryshko V.P., Kostogryz P.V. Fundamentals of scientific research in agronomy: a textbook / ed. VO Yeshchenko. Kyiv: Diya, 2005. 288 p.
  14. Methods of conducting experiments on feed production; for order. A. O. Babich. Vinnytsia, 1994. 96 p.
  15. Statistical collection “Agriculture in the Mykolaiv area”, 2018. URL: www.ukrstat.gov.ua.
  16. Gamayunova V.V. General principles of increasing the resilience and adaptation of the agricultural sector to climate change. Collection of abstracts II Int. scientific-practical conf. “Climate change and agriculture. Challenges for agricultural science and education “, April 10-12, 2019. SI NMC “Agroosvita”, Kyiv – Mykolaiv – Kherson, 2019. P. 154-158.
  17. Green N., Charter W., Tegblor D. Biology: in 3 volumes: trans. with English / ed. R. Sopera. Moscow: Mir, 1990. 376 p. (Pp. 54-55).
  18. Didkivsky M.P. Influence of weather conditions and cultivation techniques on the yield of perennial grasses. Balanced nature management. 2016. № 4. pp. 47–51.
  19. Fedoseev A.P. Agrotechnics and weather. Leningrad: Gidrometeoizdat, 1979. 238 p.
  20. State Register of Plant Varieties Suitable for Distribution in Ukraine for 2015: Official Publication. Kyiv, 2015. 352 p.
  21. State Register plant varieties suitable for distribution in Ukraine in 2019: Official publication. Kyiv, 2019. 497 p.
  22. Tishchenko O.D., Tishchenko A.V., Kuts G.M., Pilyarska O.O. Evaluation of alfalfa samples for drought resistance. Collection of abstracts II Int. scientific-practical conf. “Climate change and agriculture. Challenges for agricultural science and education “, April 10-12, 2019. SI NMC “Agroosvita”, Kyiv – Mykolaiv – Kherson, 2019. P. 276-278.
  23. The concept of development of feed production in Ukraine for the period up to 2025 / Author’s team: Petrychenko V.F., Korniychuk O.V., Babych A.A., Bugayov V.D., Kulyk M.F. and others. Vinnytsia, 2014. 12 p.