D. Babenko, M. Khramov, Yu. Syromyatnikov, I. Sukovitsyna. Field tests of the experimental installation for soil processing

UDK 631.31

 

D. Babenko, Candidate of Technical Sciences, Professor

M. Khramov

Yu. Syromyatnikov, Candidate of Technical Sciences

I. Sukovitsyna

Mykolayiv National Agrarian University

 

It is experimentally established that the quality of soil grinding by the experimental ripper-separator is especially affected by the humidity and density of the composition, so at a soil density of 1.3–1.4 g/cm3 and a minimum soil moisture of 11.4–14.4% rotor speed must be increased up to 127 rpm.

Keywords: tillage, cultivation, soil layer, rotor, differentiation.

Field tests of the experimental installation for soil processing

Польові випробування експериментальної ґрунтообробної установки

 

References:

  1. Syromjatnikov, Ju. N. (2021). Obosnovanie parametrov ryhlitelja pochvoobrabatyvajushhej mashiny stratifikatora. Inzhenernye tehnologii i sistemy. 31, (2), 257–273. [in Russian].
  2. Syromyatnikov, Y. N., Khramov, N. S. (2021). The process of lifting the soil by the working bodies of the tillage loosening-separating unit. Podilian Bulletin: Agriculture, Engineering, Economics. 33, 86–96. [in Ukrainian].
  3. Syromyatnikov, Y. et al. (2021). Productivity of tillage loosening and separating machines in an aggregate with tractors of various capacities. Journal of Terramechanics. 98, 1–6. [In English].
  4. Syromjatnikov, Ju. N., Khramov, N. S. (2020). Opredelenie tjagovogo soprotivlenija ustrojstva dlja podema pochvy v zavisimosti ot ugla postanovki napravljajushhih diskov. Agrarnaja nauka-sel’skomu hozjajstvu, 78–80. [in Russian].
  5. Syromjatnikov, Ju. N. (2018). Rabochie organy dlja podrezanija i podjoma pochvy pochvoobrabatyvajushhej ryhlitel’no-separirujushhej mashiny. Vestnik agrarnoj nauki Dona. 3, 49–56. [in Russian].
  6. Olesen, J.E., Munkholm, L.J. (2007). Subsoil loosening in a crop rotation for organic farming eliminated plough pan with mixed effects on crop yield. Soil and Tillage Research. 94 (2), 376–385. [In English].
  7. Starovojtov, S. I., Ahalaja, B. H., Mironova, A. V. (2019). Konstruktivnye osobennosti rabochih organov dlja uplotnenija i vyravnivanija poverhnosti pochvy. Jelektrotehnologii i jelektrooborudovanie v APK. 4, 51–56. [in Russian].
  8. Chaudhary, V.P., Singh, B. (2002). Effect of zero, strip and conventional till system on performance of wheat. Journal of Agricultural Engineering. 39 (2), 27–31. [In English].
  9. Celik, A., Altikat, S. & Way, T.R. (2013). Strip tillage width effects on sunflower seed emergence and yield. Soil and Tillage Research. 131, 20–27. [In English].
  10. Hossain, M.I. et al. (2014). Strip tillage seeding technique: a better option for utilizing residual soil moisture in rainfed moisture stress environments of north-west Bangladesh. Int J Recent Dev Eng Technol. 2, 132–136. [In English].
  11. Wuest, S. (2007). Vapour is the principal source of water imbibed by seeds in unsaturated soils. Seed Science Research. (1), 3–9. [In English].
  12. Wuest, S.B. (2002). Water transfer from soil to seed. Soil Science Society of America Journal. 66 (6),  1760–1763. [In English].
  13. Arnold, S. et al. (2014). Effects of soil water potential on germination of co-dominant Brigalow species: implications for rehabilitation of water-limited ecosystems in the Brigalow Belt bioregion. Ecological Engineering. 70, 35–42. [In English].
  14. Parhomenko, G. G. et al. (2021). Agrotehnicheskie i jenergeticheskie pokazateli pochvoobrabatyvajushhih rabochih organov. Inzhenernye tehnologii i sistemy. 30, 1. 109–126. [in Russian].
  15. Hou, X. et al. (2012). Effects of rotational tillage practices on soil properties, winter wheat yields and water-use efficiency in semi-arid areas of north-west China. Field crops research. 129, 7–13. [In English].
  16. Koller, K., El Titi, A. (2003). Techniques of soil tillage. Soil tillage in agroecosystems. 1–25. [In English].
  17. Hamza, M.A., Anderson, W.K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and tillage research. 82, (2), 121–145. [In English].
  18. Medvedev, V.V. (2013a). Physical degradation of chernozems. Diagnostics. Causes. The consequences. Warning. Kharkov: City Printing House. 324. [in Russian].
  19. Medvedev, V.V. (2013b). Physical properties and soil treatment in Ukraine. Kharkov: City Printing House. 224. [in Russian].
  20. Medvedev, V.V., Laktionova, T.N. (2011). Granulometric composition of Ukrainian soils (genetic, environmental and agronomic aspects). Kharkov: Apostrophe. 292. [in Russian].
  21. Medvedev, V.V. (2010). Standards are a key element of a high crop culture. 8, 6–7. [in Russian].
  22. Melnik, V.I., Kalyuzhny, O.D., Ridny, R.V. (2017). Liquid chemicals unit dosing and delivery module. Environmental Engineering. 1 (7), 76–79. [in Ukrainian].
  23. Melnik, V.I. et al. (2018). Improvement of the rotary spreader of organic fertilizers. Environmental Engineering. 2 (10), 59–62. [In English].
  24. Aniskevich, L.V. (2005). Control systems for the norms of making materials in precision farming technologies: abstract of the dissertation of the doctor of technical sciences. [in Ukrainian].
  25. Medvedev, V.V. (2007). Soil heterogeneity and precision farming. Kharkov: «13th printing house». 296. [in Russian].
  26. Kunz, C., Weber, J., Gerhards, R. (2015). Benefits of precision farming technologies for mechanical weed control in soybean and sugar beet – comparison of precision hoeing with conventional mechanical weed control. 5 (2), 130–142. [In English].
  27. Cooper, J. et al. (2016). Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: a meta-analysis. Agronomy for sustainable development. (1). 22. [In English].
  28. Barwicki, J., Gach, S., Ivanovs, S. (2012). Proper Utilization of the Soil Structure for the Crops Today and Conservation for Future Generations. Proceedings of 11-th International Scientific Conference «Engineering for Rural Development». 11, 10–15. [In English].
  29. Bottinelli, N. et al. (2015). Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil and Tillage Research. 146, 118–124. [In English].
  30. Guimarães R. M. L. et al. (2013). Relating visual evaluation of soil structure to other physical properties in soils of contrasting texture and management. Soil and Tillage Research. 127, 92–99. [In English].
  31. Nanka, O.V., Syromjatnykov, Ju.M. (2019). Rezul’taty pol’ovyh vyprobuvan’ eksperymental’noi’ g’runtoobrobnoi’ ustanovky. Visnyk Harkivs’kogo nacional’nogo tehnichnogo universytetu sil’s’kogo gospodarstva. 201, 191–202. [in Ukrainian].
  32. Nanka, O.V., Siromjatnikov, Ju.M. (2019). Vpliv chastoti obertannja rotora g’runtoobrobnoї eksperimental’noї ustanovki na pokazniki jakostі. Tehnіchnij servіs agropromislovogo, lіsovogo ta transportnogo kompleksіv. 15, 96–110. [in Ukrainian].
  33. Pashchenko V. F., Syromyatnikov Y. N. & Khramov N. S. (2018). G’runtoobrobna ustanovka z vykorystannjam gnuchkogo robochogo organu dlja kontrolju rostu bur’janiv. Vegetable and Melon Growing. 64, 33–43. [in Ukrainian].
  34. Pashhenko, V. F. et al. (2016). Obg’runtuvannja docil’nosti derzhavnoi’ pidtrymky vitchyznjanogo sil’gospmashynobuduvannja. Visnyk Harkivs’kogo nacional’nogo tehnichnogo universytetu sil’s’kogo gospodarstva imeni Petra Vasylenka. 173, 53–68. [in Ukrainian].
  35. Syromjatnykov, Ju. M. (2017). Vdoskonalennja robochyh organiv dlja pidrizannja ta pidjomu g’runtu rozryhljuval’no-separujuchoju mashynoju. Inzhenerija pryrodokorystuvannja. 2, 74–77. [in Ukrainian].