A. Demydova. Investigation of the relationship between oxidation kinetics and deterioration of sensory characteristics of vegetable oils

UDC 664.34

A Demidova

National Technical University “Kharkiv Polytechnic Institute”

One of the main problems of deterioration in the quality and safety of fats is their potential for oxidative spoilage. This problem is associated with the appearance of rancidity in fats. The primary products of oxidation – hydroperoxides do not smell and do not affect the taste of fats. However, the products of their transformation are secondary oxidation products, among which aldehydes, ketones, spites, hydroxy acids, epoxy compounds, etc. have their own taste and aroma. Aldehydes have a particularly low odor threshold, they are the main secondary oxidation products for fats with a high unsaturated fatty acid content. Octanal, nonanal, decanal, (E)-2-decenal, neanoic acid have the greatest influence on the sensation of rancidity in vegetable oils. The purpose of the research is to establish a connection between the formation of a feeling of bitterness in vegetable oils and the content of the main oxidation products – hydroperoxides and aldehydes, ie to find the possibility to predict the moment of oil rancidity using peroxide value and / or anisidine number. The article investigated the kinetics of oxidation of unrefined vegetable oils (soybean, sunflower, linseed, corn, rapeseed) at 28 ° C by changing the value of peroxide and anisidine numbers. The degree of oxidative resistance according to changes and peroxide and anisidine numbers of crude oils can be arranged in the following series (as stability decreases): soybean oil> corn oil> rapeseed oil> sunflower oil> linseed oil. During oxidation at 28 ° C and access to oxygen, oils accumulated significant amounts of hydroperoxides (up to 160 – 180 mmol 1/2O/kg). However, a sharp increase in the amount of aldehydes and generally high values of anisidine numbers was not observed, which is associated with a low oxidation temperature and the absence of rapid destruction of peroxides. Oils with high peroxide number values did not impair their sensory characteristics. The study proved the presence of a correlation between the moment of exiting the induction period according to the data of anisidine numbers and the onset of rancidity of all the studied oils. Thus, using the anisidine number indicator, it is possible to predict the moment of oil rancidity – not only by qualitative and quantitative research of volatile compound oils, but also using a simpler common method – the anisidine number.

Key words: oxidation, rancidity, vegetable oils, anisidine number, aldehydes, peroxide number, hydroperoxides.



1. Barden, L.; Decker, E.A. Lipid Oxidation in Low-moisture Food: A Review. Crit. Rev. Food Sci. Nutr. 2016. Vyp. 56. S. 2467–2482. DOI:10.1080/10408398.2013.848833.
2. Grebenteuch, S.; Kroh, L.W.; Drusch, S.; Rohn, S. Formation of Secondary and Tertiary Volatile Compounds Resulting from the Lipid Oxidation of Rapeseed Oil. Foods. 2021, Vyp. 10, 2417. DOI:10.3390/foods10102417.
3. Wei, Hu, Liangxiao, Zhang, Peiwu, Li, Xiupin, Wang, Qi, Zhang, Baocheng, Xu, … Xiaoxia, Ding. Characterization of volatile components in four vegetable oils by headspace two-dimensional comprehensive chromatography time-of-flight mass spectrometry. Talanta.2020. Vyp. 129, R. 629–635. DOI: 10.1016/j.talanta.2014.06.010.
4. Jeleń, H. H., Majcher, M., Dziadas, M. Microextraction techniques in the analysis of food flavor compounds: A review. Analytica Chimica Acta. 2012. Vyp. 738. R. 13–26. DOI:10.1016/j.aca.2012.06.006.
5. Sharma, S., Cheng, S.-F., Bhattacharya, B., & Chakkaravarthi, S. Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oil: Special emphasis on nanoemulsion-based encapsulation. Trends in Food Science & Technology. 2019. Vyp. 91. R. 305 –318. doi:10.1016/j.tifs.2019.07.030.
6. Mohammadi, A., Jafari, S. M., Esfanjani, A. F., & Akhavan, S. Application of nanoencapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chemistry. 2016. Vyp. 190. R. 513–519. DOI:10.1016/j.foodchem.2015.05.115.
7. Ozcan-Sinir, G. Detection of adulteration in extra virgin olive oil by selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics. Food Control. 2020. Vol. 118. doi: 10.1016/j.foodcont.2020.107433.
8. Li, X., Li, J., Wang, Y., Cao, P., & Liu, Y. Effects of frying oils’ fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process. Food Chemistry. 2017. Vyp. 237. R. 98–105. DOI:10.1016/j. foodchem.2017.05.100.
9. Gama, T.; Wallace, H.M.; Trueman, S.J.; Hosseini-Bai, S. Quality and shelf life of tree nuts: A review. Sci. Hortic. 2018. Vyp. 242. R. 116–126. DOI:10.1016/j.scienta.2018.07.036.
10. Perestrelo, R., Silva, C., Silva, P., & Camara, J. S. Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants. Food Chemistry. 2017. Vyp. 227. R. 111–121.DOI: 10.1016/j.foodchem.2017.01.090.
11. Ramos-Escudero, F., Morales, M. T., Escudero, M. R., Muñoz, A. M., Chavez, K. C., & Asuero, A. G. Assessment of phenolic and volatile compounds of commercial Sacha inchi oils and sensory evaluation. Food Research International. 2021. Vyp. 140, 110022. DOI:10.1016/j.foodres.2020.110022.
12. Sghaier, L., Vial, J., Sassiat, P., Thiebaut, D., Watiez, M., Breton, S., & Cordella, C. B. Y. An overview of recent developments in volatile compounds analysis from edible oils: Technique-oriented perspectives. European Journal of Lipid Science and Technology. 2016. Vyp. 118(12). R. 1853–1879. DOI:10.1002/ejlt.201500508.
13. Fortini, M., Migliorini, M., Cherubini, C., Cecchi, L., & Calamai, L. Multiple internal standard normalization for improving HS-SPME-GC-MS quantitation in virgin olive oil volatile organic compounds (VOO-VOCs) profile. Talanta. 2017. Vyp. 165. R. 641–652. doi:10.1016/j.talanta.2016.12.082.
14. Gyorgy Vas, Louis Fleck. Importance of a High Performing GC-MS Based Screening Method for Testing Stability Samples for Volatile and SemiVolatile Leachable Impurities. Rev. Sep. Sci. 2021. Vyp. 3(1). R. 3 -20. DOI:10.17145/rss.21.002.
15. Xu, L., Yu, X., Li, M., Chen, J. & Wang, X. Monitoring oxidative stability and changes in key volatile compounds in edible oils during ambient storage through HS-SPME/GC–MS. International Journal of Food Properties. 2017. Vol. 20, № S2926–S2938. DOI:10.1080/10942912.2017.1382510.
16. Scortichini, S., Boarelli, M. C., Castello, M., Chiavarini, F., Gabrielli, S., Marcantoni, E., & Fiorini, D. Development and application of a solid-phase microextraction gas cromatography mass spectrometry method for analysing volatile organic compounds produced during cooking. Journal of Mass Spectrometry. 2020. e4534. doi:10.1002/jms.4534.
17. Grebenteuch, S.; Kanzler, C.; Klaußnitzer, S.; Kroh, L.W.; Rohn, S. The Formation of Methyl Ketones during Lipid Oxidation at Elevated Temperatures. Molecules. 2021, Vyp. 26, 1104. DOI: 10.3390/molecules26041104.
18. Ghiasvand, A., Behfar, M., & Yazdankhah, F. Reduced-Pressure Fiber-in-Needle Sampling of Aldehydes for Room Temperature Assessment of Edible Oils’ Oxidative Stability. Chromatographia. 2019. doi:10.1007/s10337-019-03752-7.
19. Molina-Garcia L, Santos CSP, Cunha SC, Casal S, Fernandes J.O. Comparative fingerprint changes of toxic volatiles in low PUFA vegetable oils under deep-frying. J am Oil Chem Soc. 2017. Vyp. 94. R. 271-284. DOI:10.1007/s11746-016-2943-1.
20. Domìnguez R, Gòmez M, Fonseca S, Lorenzo JM. Influence of thermal treatment on formation of volatile compounds, cooking loss and lipid oxidation in foal meat. Food Sci Technol. 2014. Vyp. 58. R. 439-445. DOI:10.1016/j.lwt.2014.04.006.
21. Tavakoli J, Emadi T, Hashemi SMB, Mousavi Khaneghah A, Munekata PES, Lorenzo JM, Brnčić M, Barba FJ. Chemical properties and oxidative stability of Arjan (Amygdalus reuteri) kernel oil as emerging edible oil. Food Res Int. 2018. Vyp. 107. R. 378–384. DOI:10.1016/j.foodres.2018.02.002.
22. Varas Condori, M. A., Pascual Chagman, G. J., Barriga Sanchez, M. E., Villegas Vilchez, L. F., Ursetta, S., Guevara, A., & Hidalgo, A. Effect of tomato (Solanum lycopersicum L.) lycopene-rich extract on the kinetics of rancidity and shelf-life of linseed (Linum usitatissimum L.) oil. Food Chemistry. 2019. 125327. doi:10.1016/j.foodchem.2019.12532.
23. Goicoechea, E.; Guillén, M. D. Volatile Compounds Generated in Corn Oil Stored at Room Temperature. Presence of Toxic Compounds. Eur. J. Lipid Sci. Technol. 2014. Vyp. 116. R. 395–406. DOI:10.1002/ejlt.201300244.
24. Petersen, K. D., Kleeberg, K. K., Jahreis, G., Fritsche, J. Assessment of the Oxidative Stability of Conventional and High-Oleic Sunflower Oil by Means of Solid-Phase Microextraction-Gas Chromatography. Int. J. Food Sci. Nutr. 2019.Vyp. 63. R. 160–169. DOI: 10.3109/09637486.2011.609158.
25. Alamgir, A.N.M. Secondary metabolites: Secondary metabolic products consisting of C and H; C, H, and O; N, S, and Pelements; and O/N heterocycles (Book Chapter) Progress in Drug Research. Therapeutic Use of Medicinal Plants and their Extracts. 2018. Vyp. 2. R.165–309. DOI:10.1007/978-3-319-92387-1_3.
26. Min D. B., Bradley G. D. (1992) Fats and Oils: Flavors. In Wiley Encyclopedia of Food Science and Technologhy. John Wiley and Sons, Inc: New York.
27. Bailey’s Industrial Oil and Fat Products. In Edible Oils and Fat Products. Chemistry. Properties, and Health Effects. 2005. Vol. 1.
28. Mba, O.I.; Dumont, M.-J.; Ngadi, M. Deterioration Kinetics of Crude Palm Oil, Canola Oil and Blend During Repeated Deep-Fat Frying. J. Am. Oil Chem. Soc. 2016. Vyp. 93. R. 1243–1253. DOI:10.1007/s11746-016-2872-z.
29. Multari, S., Marsol-Vall, A., Heponiemi, P., Suomela, J.-P., & Yang, B. Changes in the volatile profile, fatty acid composition and other markers of lipid oxidation of six different vegetable oils during short-term deep-frying. Food Research International. 2019. Vyp. 122. R. 318-329. doi:10.1016/j.foodres.2019.04.026.
30. Nan, X., Wu, Q., Nan, S., Zeng, X., Dai, Y., & Kang, L. Effect of Oil Oxidation on Acrylamide Formation in Oil-Rich Model Systems without the Participation of Reducing Sugars. Journal of Food Protection. 2020. Vyp. 83(2). R. 342–349. doi:10.4315/0362-028x.jfp-19-353.
31. Giuffre, A. M., Capocasale, M., Zappia, C., & Poiana, M. Influence of high temperature and duration of heating on the sunflower seed oil properties for food use and bio-diesel production. Journal of Oleo Science. 2017. Vyp. 66(11). R. 1193–1205. DOI:10.5650/jos.ess17109.
32. Nosratpour, M., Farhoosh, R., & Sharif, A. Quantitative indices of the oxidizability of fatty acid compositions. European Journal of Lipid Science and Technology. 2017. Vyp. 119(12), 1700203. DOI:10.1002/ejlt.201700203.