S. Bondar, A. Trubnikova, O. Chabanova, T. Sharachmatova, T. Nedobiichuk. Application of nanofiltration for regulation of properties of secondary products of processing of animal raw materials

UDC 637.247:637.044-021.146.4

 

S. Bondar

A. Trubnikov

O. Chabanova

T. Sharakhmatova

T. Nedobiychuk

Odesa National Academy of Food Technologies

 

An important problem of the food industry remains the processing of secondary material resources, in particular, buttermilk. The problem is closely related to environmental issues. Due to the favorable chemical composition in the environment, where wastewater from the relevant industries enters, the microflora develops intensively. This fact affects the main indicators of hydrosphere pollution. Establishing strict requirements for the degree of pollution can stimulate the development of innovative environmental projects, for example, with the use of membrane processes. Membrane technologies, in particular nanofiltration, are an effective tool to help process buttermilk. Energy efficiency, versatility, versatility and other significant advantages are determining the growing use of applications. The spread of membrane technologies is facilitated by the fact that environmental legislation pays special attention to the problem of contamination of wastewater from dairy enterprises. Such enterprises are defined as extremely important for the pollution of the hydrosphere and lithosphere. In addition, the dairy industry today remains a major food industry in terms of membrane equipment and technology. Among the processes of utilization of serum and buttermilk removal of lactose and minerals are developed most intensively. Membrane technologies have recently become a profitable alternative to the demineralization of dairy products by ion exchange and electrodialysis. It is also important to have a minimal impact on the natural value of raw materials. This is due to the “mild” processing conditions and the lack of phase transition of the liquid.

This article focuses on the study of the membrane concentration process using nanofiltration membranes in relation to butterfly ultrafiltrates. Nanofiltration allows highly efficient separation of lactose from inorganic substances. In practice, nanofiltration membranes made of organic and mineral polymers are used. Two types of nanofiltration membranes of Vladimor OPMN are investigated in order to identify the main dependences of filtration. Flat polyamide membranes are to be tested. Membranes are part of a laboratory installation of flat frame type. Testing is performed in a flow periodic mode. For each type of membrane, a pressure in the range of 0.5 to 2.0 MPa and a temperature of 20 to 40 ° C are applied. The specific productivity and selectivity of the tested membranes and their dependence on nanofiltration treatment factors are the main subject of research. The results indicate that both types of membranes effectively retain lactose at a pressure of 2.0 MPa, a temperature of 40 ° C and a concentration factor of about 2. Variation of the flow rate over the membrane from 0.5 m / s to 1.5 m / s allows you to get increase in specific productivity by 15% from the initial. The influence of the effects of concentration polarization on the specific productivity of nanofiltration membranes of the OPMN type is established. The limitation of the concentration factor due to the increase in the osmotic pressure of the solution is determined. The conclusion is made about the need to study the processes of membrane regeneration.

Key words: buttermilk, ultrafiltration, nanofiltration, lactose, membrane concentration.

 

References:

1. Vyshemirskij, F. A., & Ozhgihina, N. N. (2011). Pahta: minimum kalorij-maksimum biologicheskoj cennosti. Molochnaja promyshlennost’, (9), 54-56.
2. Vanderghem, C., Bodson, P., Danthine, S., Paquot, M., Deroanne, C., & Blecker, C. (2010). Milk fat globule membrane and buttermilks: from composition to valorization. Biotechnol. Agron. Soc. Environ, 14(3), 485-500
3. Conway, V., Gauthier, S. F., & Pouliot, Y. (2013). Antioxidant activities of buttermilk proteins, whey proteins, and their enzymatic hydrolysates. Journal of agricultural and food chemistry, 61(2), 364-372.Radkevych, L. A. (2009). Tekhnolohichni innovatsii u kharchovii promyslovosti ta problemy yikh vprovadzhennia. Ekonomika kharchovoi promyslovosti, (2), 5-10.
4. Radkevych, L. A. (2009). Tekhnolohichni innovatsii u kharchovii promyslovosti ta problemy yikh vprovadzhennia. Ekonomika kharchovoi promyslovosti, (2), 5-10.
5. Kravchenko, E. F. (2010). Ob effektivnoi pererabotke vtorichnogo molochnogo sirya. Molochnaya promishlennost, (12), 66-66.
6. Proshutinskaya, YU. S. (2019). Tehnologiya produktov iz obezzhirennogo moloka, pahti i molochnoi sivorotki. Molodezh i nauka, (3), 83-83.
7. Iudina, T. I., & Nazarenko, I. A. (2017). Pokaznyky yakosti molochno-roslynnykh farshiv na osnovi kontsentratu zi skolotyn. Obladnannia ta tekhnolohii kharchovykh vyrobnytstv, (34), 21-26.
8. Bondar, S. M., Trubnikova, A. A., & Chabanova, O. B. (2018). Doslidzhennia membrannoho protsesu vydalennia laktozy z kontsentratu maslianky. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni SZ Gzhytskoho. Seriia: Kharchovi tekhnolohii, (20,№ 85), 62-69. doi: 10.15421/nvlvet8512
9. Trubnikova, A. A., Chabanova, O. B., Bondar, S. M., & Sharakhmatova, T. Ye. (2019). Oderzhannia sukhoho bezlaktoznoho bilkovo-lipidnoho kontsentratu maslianky. Visnyk Natsionalnoho tekhnichnoho universytetu KhPI. Seriia: Novi rishennia v suchasnykh tekhnolohiiakh, (1), 86-99.
10. Islamov, M. N., & Omarov, M. M. (2015). Perspektivnye napravleniya ispol’zovaniya membrannyh tekhnologij v pishchevoj industrii. Pishchevaya promyshlennost’, (10). S. 16-18.
11. Smikov, I.T. (2007) Nanotehnologii v proizvodstve molochnih produktov. Pererabotka moloka, №12. S. 24-27.
12. Van der Horst, H. C., Timmer, J. M. K., Robbertsen, T., & Leenders, J. (1995). Use of nanofiltration for concentration and demineralization in the dairy industry: Model for mass transport. Journal of membrane science, 104(3), 205-218. doi.org/10.1016/0376-7388(95)00041-A
13. Mohammad, A. W., & Takriff, M. S. (2003). Predicting flux and rejection of multicomponent salts mixture in nanofiltration membranes. Desalination, 157(1-3), 105-111. doi.org/10.1016/S0011-9164(03)00389-8
14. Fane, A. G. (1987). Synthetic Membranes: Science, Engineering and Applications: by PM Bungay, HK Lonsdale and MN de Pinho (Eds.), Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA, USA, 1986, 733 pp.
15. S. Szoke, S., Patzay, G., & Weiser, L. (2003). Characteristics of thin-film nanofiltration membranes at various pH-values. Desalination, 151(2), 123-129. doi.org/10.1016/S0011-9164(02)00990-6
16. Gilron, J., Gara, N., & Kedem, O. (2001). Experimental analysis of negative salt rejection in nanofiltration membranes. Journal of Membrane science, 185(2), 223-236. doi.org/10.1016/S0376-7388(00)00639-6
17. Cao, J., Zhang, W., Wu, S., Liu, C., Li, Y., Li, H., & Zhang, L. (2015). Effects of nanofiltration and evaporation on the physiochemical properties of milk protein during processing of milk protein concentrate. Journal of dairy science, 98(1), 100-105. doi.org/10.3168/jds.2014-8619
18. Cuartas-Uribe, B., Alcaina-Miranda, M. I., Soriano-Costa, E., Mendoza-Roca, J. A., Iborra-Clar, M. I., & Lora-García, J. (2009). A study of the separation of lactose from whey ultrafiltration permeate using nanofiltration. Desalination, 241(1-3), 244-255. doi.org/10.1016/j.desal.2007.11.086
19. Cuartas-Uribe, B., Alcaina-Miranda, M. I., Soriano-Costa, E., & Bes-Pia, A. (2007). Comparison of the behavior of two nanofiltration membranes for sweet whey demineralization. Journal of dairy science, 90(3), 1094-1101. doi.org/10.3168/jds.S0022-0302(07)71596-5
20. Timmer, J. M. K. (2001). Properties of nanofiltration membranes: model development and industrial application. Eindhoven: Technische Universiteit Eindhoven. DOI: 10.6100/IR545659
21. H. Roginski, J.W. Fuqua and P.F. Fox. Encyclopedia of dairy sciences. (2003) Academic Press. London.
22. Suárez, E., Lobo, A., Alvarez-Blanco, S., Riera, F. A., & Álvarez, R. (2006). Utilization of nanofiltration membranes for whey and milk ultrafiltration permeate demineralization. Desalination, 199(1-3), 345-347. doi:10.1016/j.desal.2006.03.081
23. Atra, R., Vatai, G., Bekassy-Molnar, E., & Balint, A. (2005). Investigation of ultra-and nanofiltration for utilization of whey protein and lactose. Journal of food engineering, 67(3), 325-332. doi.org/10.1016/j.jfoodeng.2004.04.035
24. Di Stefano, M., Miceli, E., Mazzocchi, S., Tana, P., Moroni, F., & Corazza, G. R. (2007). Visceral hypersensitivity and intolerance symptoms in lactose malabsorption. Neurogastroenterology & Motility, 19(11), 887-895. DOI:10.1111/j.1365-2982.2007.00973.x.
25. Xiong L. et. al. (2017). Prevalence of lactose intolerance in patients with diarrhea-predominant irritable bowel syndrome: data from a tertiary center in southern China. J Health Popul Nutr. Nov 21. 36(1):38.
26. Suchy, F. J., Brannon, P. M., Carpenter, T. O., Fernandez, J. R., Gilsanz, V., Gould, J. B., … & Wolf, M. A. (2010). NIH consensus development conference statement: Lactose intolerance and health. NIH consensus and state-of-the-science statements, 27(2), 1-27.
27. Standart, F. R. N. (2009). DІN 10344-82. Moloko i molochnye produkty. Metod opredelenija galaktozy.–Vved. 01.01. 2000. M.: Standartinform.
28. Krus’, G. N., Shalygina, A. M., & Volokitina, Z. V. (2000). Metody issledovanija moloka i molochnyh produktov. M.: Kolos, 368.