Modeling and agroecological substantiation of a recovery period for soils to ensure their sustainable functioning

UDC 631.4 : 631/635

DOI: 10.31521/2313-092X/2019-2(102)-7

 

P. Trofymenko
V. Zhuravlev
N. Trofymenko
S. Veremeyenko

 

      The paper presents the algorithm of modeling, agroecological substantiation and features of the use of a recovery period for soils to ensure their sustainable functioning. Based on the information on the soil emission activity, it is proposed to determine a period of a low CO2 emission intensity as a soil recovery period (SRP). Within the SRP it is proposed to distinguish autumn (I) and spring (II) parts of it. It is shown that paying special attention to the time intervals with different intensity of CO2 emissions enables to minimize the losses of С-СО2.
     The duration of the recovery period for different soils varied over the years of research and depended on weather and climatic conditions as well as on their fertility. The number of SRP days with a minimal (<1 kg / ha / year), middle (<1 to 1.5 kg / ha / year) and high (<1.5 to 2.0 kg / ha / year) intensity of CO2 emissions from the soil was on average for: soddy medium-podzolic fixed-sandy soil on the loesslike  deposits, respectively – 30,7; 38.7; 45,7; soddy medium-podzolic fixed-sandy soil on the  ancient alluvium – 25,3; 34.4; 42,1; clear-gray, eluviated sandy soil on the loesslike  deposits – 19,2; 26.2; 32,6; clear-gray eluviated sandy-light loamy soils on the loesslike  deposits – 14,9 21,1 26,4.
     The estimated C losses in the total amount of CO2 emissions from the soddy-podzolic fixed-sandy soil within the SRP by the intensity of CO2 emissions are: at minimal – 3.5-6.3%, middle – 6.9- 12.4% and high intensity – 11.0-19.9%.

     Keywords: modeling, stable functioning, recreation period of soils, CO2 emissions.

References

  1. Balyuk S.A., Medvedyev V.V., Tarariko O.H., Hrekov V.O., Balayev A.D. ta in. (2010) Natsionalʹna dopovidʹ pro stan rodyuchosti gruntiv Ukrayiny. Minahropolityky, Tsentrderzhrodyuchistʹ, NAANU, NNTS IHA imeni O.N.Sokolovsʹkoho, NUBiP, S.14-15.
  2. Dubovyk V. P., Yuryk I. I. (2006). Vyshcha matematyka: Navch. posibn. – K: A.S.K. – 648 s.
  3. Zaklyuchnyy zvit «Pro naukovo-doslidnu robotu rozroblennya stsenariyiv zminy klimatychnykh umov v Ukrayini na serednʹo- ta dovhostrokovu perspektyvu z vykorystannyam danykh hlobalʹnykh ta rehionalʹnykh modeley» (2013). UkrHMI, URL: https: //uhmi.org.ua/project/rvndr/climate.pdf.
  4. Kudeyarov V.N., Zavarzin G.A., Blagodatskiy S. (2007). Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii. Institut fiziko-khimicheskikh i biologicheskikh problem pochvovedeniya RAN. – M.: Nauka, 315s.
  5. Kurganova I.N. (2010). Emissiya i balans dioksida ugleroda v nazemnykh ekosistemakh Rossii: avtor. dis. na soisk. uch. st. dokt. biol. nauk.: spets. 03.00.27 – «Pochvovedeniye, 03.00.16 – Ekologiya. Moskva. 50s.
  6. Kobak K.I. (1988). Bioticheskiye komponenty uglerodnogo tsikla. Izd., Gidrometeoizdat, L., 248 s.
  7. Lopes de Gerenyu V.O., , I.N. Kurganova, L.N. Rozanova, V.N. (2001). Godovaya emissiya dioksida ugleroda iz pochv yuzhnotayezhnoy zony Rossii. № 9.  S. 1045-1059.
  8. Makarov B.N. (1988). Gazovyy rezhim pochvy. Moskva: Agropromizdat, 105 c.
  9. Medvedev V.V., Plisko I.V. (2014). Proyavleniye fizicheskoy degradatsii v raspakhivayemykh pochvakh. Agrokhímíya í g̀runtoznavstvo. № 81. S. 16-28.
  10. Natsional’nyy kadastr antropogennykh vybrosov iz istochnikov i absorbtsii poglotitelyami parnikovykh gazov v Ukraine za 1990-2010 gg./ Ministerstvo ekologii i prirodnykh resursov Ukrainy/ Kiyev, (2012) – 530 s.
  11. Palamarchuk R.P., Trofymenko P.I., Vyshnevsʹkyy F.O., Trofymenko N.V., Borysov F.I. (2018). Zapasy ta vtraty orhanichnoho vuhletsyu dernovo-pidzolystymy gruntamy Zhytomyrsʹkoho Polissya u konteksti zmin klimatu. Ahrokhimiya i gruntoznavstvo. Spets. vyp. do XI-y zʺyizdu gruntoznavtsiv ta ahrokhimikiv Ukrayiny, m. Kharkiv 17-21 veresnya, S. 220-223.
  12. Romashchenko M.I., Tarariko YU.O. (2017). Meliorovani ahroekosystemy. Otsinka ta ratsionalʹne vykorystannya ahroresursnoho potentsialu Ukrayiny zony zroshennya i osushennya/ NAAN Ukrayiny, IVPiM / za red. Romashchenko M.I., Tarariko YU.O., K. S. 15.
  13. Sposib vyznachennya intensyvnosti emisiyi haziv z gruntu: Pat. 98998 Ukrayina, MPK G01F 1/76 (2006/01); № u 201413566; zayavl. 17.12.2014 ; data publikatsiyi 12.05.2015, Byul. № 9.
  14. Trofimenko P.I., Borisov F. I., Trofimenko N. V. Intensivnost’ dykhaniya pochv Levoberezhnogo Poles’ya Ukrainy v usloviyakh agrotsenoza. Pochvovedeniye i agrokhimiya. – 2015. – № 2 (55). – S. 56–65.
  15. Trofymenko P.I. (2015). Naukove obgruntuvannya alhorytmu zastosuvannya kamernoho statychnoho metodu vyznachennya intensyvnosti emisiyi parnykovykh haziv iz gruntu / P.I. Trofymenko, F.I. Borysov // Ahrokhimiya i gruntoznavstvo.. № 83. S. 17–24.
  16. Trofymenko P.I., Trofymenko N. V. (2016). Vplyv abiotychnykh chynnykiv na intensyvnistʹ produkuvannya SO2 gruntamy perekhidnoyi zony tsentralʹnoho polissya v kholodnyy period / Visn. Kharkivsʹkoho nats. ahrar. un-tu im. V. V. Dokuchayeva. № 1. – S. 212–221.
  17. Green J. K., Seneviratne S. I., Berg A. M., Findell K. L., Hagemann S., Lawrence D. M., Gentine P. (2019). Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, volume 565, pages 476–479.
  18. State of the climate in 2017. Special Supplement to the Bulletin of the American Meteorological Society Vol. 99, No. 8, August 2018. P. 332.
  19. Trofimenko P.I., Trofimenko N. V., Borisov F. I., Zubova O. V. (2016). The assessment of the effects of the atmospheric pressure on the intensity of СО2 emission from Polissya soils in the cold time period. Mechanization in agriculture and conserving of the resources. № 5. – P. 20–22.
  20. Yagi K. (1997). Methane emission from paddy filds. Natl. Inst. Agroenviron Sci. № 14. C.96-210.