Ivanova I., Serdiuk M., Malkina V., Shkinder-Barmina A., Kryvonos I. Cherry yield depending on the climatic conditions of the cultivation years

UDC [634.23:551.58](477.7)


I. Ivanova

M. Serdiuk

V. Malkina

A. Shkinder-Barmina

I. Kryvonos


Cherry refers to traditional fruit crops grown in Ukraine. Its value lies in its precocity, winter hardiness, stable yield, early fruits ripening and unpretentiousness to soil conditions. One of the main requirements for modern varieties of cherries is the high yield. A prerequisite for successful cultivation of cherries is to select varieties that meet local climate.
Therefore, determining the characteristics of cherry reactions to the current agro-climatic conditions of the Southern Steppe zone of Ukraine and identifying the main weather factors that affect the crop yield is an actual question.
The purpose of the research was to establish objective agro-climatic indicators that have an impact on cherry yield in the Southern Steppe zone of Ukraine and to create a mathematical model of crop yield based on the identified stress factors.
To achieve this goal, we performed correlation and regression analyzes: the strength of correlation relationships between agro-climatic indicators and crop yield was calculated; determined a set of weather factors that significantly affect cherry yield; the obtained equations for the dependence of the average yield of cherries on the stress factors that will help to predict the parameter under the action of objective environmental stress factors.
During the research 20 paired correlation dependencies were investigated in the stages: vegetation period, flowering, fruit ripening and harvesting. For ten weather factors their influence on the cherry yield indicators for the period 2007-2019 was determined. A strong correlation (r = 0.68… -0.86) with cherry yield is set for the following factors: the sum of active temperatures during the growing season (until the fruit ripening stage), average monthly rainfall for August, absolute minimum relative humidity in  May;  during flowering – the difference between the average maximum and minimum air temperatures, the sum of active temperatures, the sum of effective temperatures, the hydrothermal coefficient (HTC), the sum and the total number of days with precipitation.
When constructing a regression model of the dependence of the Y cherry yield on the factors of weather conditions (Xi, where i=1..10)a large number of factors were insignificant at the same time a large value of the coefficient of determination R2=0,99580.
The regression model of the dependence of the Y cherry yield on the factors of weather conditions looks like:
Unambiguously the best model by all criteria was not found. Therefore, it is decided to determine the most effective model based on practical feasibility. It was chosen the model with, firstly, the smallest value of insignificant factors and, secondly, the highest value of the indicator AIC.
This model is:
The generalized coefficient of determination is equal R2adjusted=0,996, which indicates a significant correlation of the selected factors with the indicator Y (cherry yield). The value of statistics when checking the adequacy of the model by Fisher’s criterion F=84,44 at a value p-value=6,898∙105, which indicates the adequacy of the model at the level of significance α=0,05.
The above equation is generally statistically significant. The described dependence of cherry yield on stressful weather factors may serve as a basis for some management decisions and the resulting regression equation can be used to build statistical forecasts.

Keywords: yield, cherry, weather factors, multifactorial model, temperature, precipitation, humidity.


1. Aiken, L. S, West, S. G. (1991). Multiple regression: Testing and interpreting interaction. Newbury Park, CA: SAGE.
2. Akaike, H.(1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, AC- 19, 716-723.
3. Bakhrushyn, V. E.(2011). Metodы otsenyvanyia kharakterystyk nelyneinыkh statystycheskykh sviazei[Evaluation methods of characteristics of nonlinear statistical relationships.]. Systemnыe tekhnolohyy, 2 (73), 9-14[in Russian].
4. Bublyk, M. O.(2005). Metodolohichni ta tekhnolohichni osnovy pidvyshchennia produktyvnosti suchasnoho sadivnytstva[Methodological and technological bases of productivity increase of modern gardening ]. Kyiv: Nora-Druk [in Ukrainian].
5. Galuzeva programa rozvy`tku sadivny`cztva Ukrayiny` na period do 2025 roku[Sectoral program for the development of horticulture in Ukraine until 2025 ].(2008). Kyiv: SPD “Zhy`telyev S.I.” [in Ukrainian].
6. Gerasko, T., Velchevа, О., Todorova, l., Pokoptseva, L., Ivanova, I.(2019). Effect of Living Mulch on Chlorophyll Index, Leaf Moisture Content and Leaf Area of Sweet Cherry (Prunus avium L.). Modern Development Paths of Agricultural Production. Trends and Innovations : Conference proceedings, 681-688.
7. Derzhavnyi reiestr sortiv roslyn, prydatnykh dlia poshyrennia v Ukraini u 2006 rotsi (vytiah stanom na 7.02.2006 roku)[ State Register of Plant Varieties Suitable for Distribution in Ukraine in 2006 (extract as of February 7, 2006)]. (2006). Kyiv: Alefa [in Ukrainian].
8. Eksperty poiasnyly prychynu «kosmichnykh» tsin na chereshniu[Experts explained the reason for the “space” prices for cherries].
URL : ua.news/ua/eksperty-poyasnyly-prychynu-kosmichnyh-tsin-na-chereshnyu.
9. Ivanova, I., Kryvonos, I. Shleina, L., Taranenko, G., Gerasko, T.(2019). Multicriteria Optimization of Quality Indicators of Sweet Cherry Fruits of Ukrainian Selection During Freezing and Storage. Modern Development Paths of Agricultural Production. Trends and Innovations : Conference proceedings, 707-717.
10. Kopania, V. P.(Ed) (1999). Atlas perspektyvnыkh sortov plodovkh y yahodnkh kultur Ukrayny[Atlas of promising fruit and berry crops varieties in Ukraine]. Kyiv: Odeks [in Russian].
11. Kuian, V. H. (2004). Spetsialne plodivnytstvo[Special fruit growing]. Kyiv: Svit [in Ukrainian].
12. Kupryenko, N. V., Ponomareva, O. A., Tykhonov D. V. (2009). Statystycheskye metodы yzuchenyia sviazei. Koreliatsyonno-rehresyonnыi analyz[Statistical methods for studying relationships. Correlation Regression Analysis]. Sankt-Peterburh : Yzd-vo Polytekhn. un-ta [in Russian].
13. Kutner, M. Н., Nachtsheim, C., Neter, J. (2004). Applied Linear Statistical Models (4thedn.) McGraw-Hill Education. URL: https://www.amazon.com/Applied-Linear-Regression-Models-Student/dp/0073014664.
14. Onyshchuk, Y. S., Serheev, V. F., Odyntsova, V. A. (1997). Vesennye zamorozky y umenshenye ykh vlyianyia na pochky kostochkovыkh derevev. Sadovodstvo y vynohradarstvo, 2, 5-7 [in Russian].
15. Orekhova, V. P.(1989). Sorta vyshny dlia promыshlennыkh sadov stepnoho Krыma[Cherry varieties for industrial gardens of Crimea steppe. Selection intensification and introduction into production of new fruit crops varieties.]. Yntensyfykatsyia selektsyy y vnedrenyia v proyzvodstvo novыkh sortov plodovыkh kultur. Yalta, 107, 105-117 [in Russian].
16. Serdiuk, M. E., Rastorhuev, A. B.(2013). Otsenka vlyianyia pohodnыkh faktorov na urozhainost yablony v uslovyiakh Yuzhnoi stepnoi zonы Ukraynы[Influence estimation of weather factors on apple-tree productivity in the conditions of the Southern steppe zone of Ukraine.]. Plodovodstvo, 25, 132-140 [in Russian].
17. Serdyuk, M., Stepanenko, D., Kurchev, S.(2016). The study of mass loss intensity of plum fruit during storage. Eastern-European Journal of Enterprise Technologies, 1(10), 42-48.
18. Systema vedennia silskoho hospodarstva Zaporizkoi oblasti[The system of agriculture in Zaporizhzhia region]. Zaporizhzhia: TsNTI [in Ukrainian].
19. Sukhotskaia, S. H.(1984). Zymostoikost sortov y otbornыkh form vyshny stepnoi v lesostepy Omskoi oblasty[Varieties winter hardiness and selected forms of steppe cherries in the forest-steppe of Omsk region. Introduction and fruit and berry crops variety study in Western Siberia.]. Yntroduktsyia y sortoyzuchenye plodovo-yahodnыkh kultur v Zapadni Sybyry, 3, 41-49 [in Russian].
20. Turovtsev, M. I., Turovtseva, V. O.(Ed) (2002). Raionovani sorty plodovykh i yahidnykh kultur selektsii Instytutu zroshuvanoho sadivnytstva[Zoned fruit and berry crops varieties selected by the Institute of Irrigated Horticulture]. Kyiv: Ahrarna nauka [in Ukrainian].
21. Turovtseva, V. A., Turovtsev, N. Y., Shkynder-Barmyna, A. N., Turovtseva, N. N.(2013). Sozdanye sortov vyshny y diukov na yuhe Ukraynы[Creation of cherry varieties and dukes in the south of Ukraine. Methodological support for the selection of horticultural crops and grapes at the present stage.]. Metodolohycheskoe obespechenye selektsyy sadovыkh kultur y vynohrada na sovremennom эtape, 1, 135-142 [in Russian].
22. Turovtseva, V. A., Turovtsev, N. Y., Turovtseva, N. N. (2007). Rezultatы selektsyy vyshny v Ynstytute oroshaemoho sadovodstva ym. M.F. Sydorenka UAAN[The results of cherry breeding at the Institute of Irrigated Horticulture named after M.F.Sydorenko NAAS.]. Sad, vyno, vynohrad Ukraynы, 3, 8-15[in Russian].
23. Shkinder-Barmina, A. M. (2014). Hospodarsko-biolohichna otsinka sortiv vyshni v umovakh Pivdennoho Stepu Ukrainy: avtoreferat dys. kand. s.-h. nauk: 06.01.07[Economic and biological assessment of sweet cherry varieties in the conditions of the Southern Steppe of Ukraine] (Extended abstract of candidate’s thesis). Kyiv: IH NAAS [in Ukrainian].
24. Yushev, A. A.(1985). Vyshnia y chereshnia[Cherries and sweet cherries ]. Lenynhrad: Ahropromyzdat [in Russian].

Ivanova I., Serdyuk M., Herasko T., Belous E., Kryvonos I. The sweet cherry yield depending on the climatic conditions of the years of cultivations

UDC [58.055:634.23](477.7)


I. Ivanova

M. Serdyuk

T. Herasko

E. Belous

I. Kryvonos


In the conditions of the Southern Steppe zone of Ukraine, the receiving high yields of garden crops depends not only on the complex of agro-technical and management measures. Natural and climatic factors have a significant, and sometimes decisive, impact on productivity. Cherry culture is a business card of stone bones in the southern region of Ukraine. Given the above, the definition of the ecological suitability or discomfort of individual weather factors for cherry yields in the Southern Steppe zone of Ukraine remains an important issue for the research by scientists.
The purpose of the research was to substantiate the effect of meteorological factors on the cherry yield in the conditions of the Southern Steppe zone of Ukraine and to create a mathematical model of the crop yield based on the identified stress factors.
The article describes the priority meteorological factors for increasing the sweet cherry yield in the conditions of the Southern Steppe zone of Ukraine. Using the methods of mathematical statistics, an agricultural assessment of the effect of weather conditions on the cherry yield during the period 2008-2018 was obtained. During the correlation analysis it was found that the yield is affected by a complex of hydrothermal conditions (factors). The 202 factors were selected for the study, which may affect cherry yield changes. The average correlation relationships are set for 78 of 202 factors in the range of r – 0.33… 0.66.
The nine stress factors as components of a common set of weather conditions in the region, which affect the sweet cherry yield are revealed by the results of correlation analysis.
The results of the correlation analysis revealed nine stress factors as components of a holistic complex of weather conditions in the region that affect the sweet cherry yield. These include: the absolute minimum air temperature in April and May, the sum of active temperatures in the spring period, the total number of days with precipitation in December and during flowering; the sum of precipitation during flowering period, hydrothermal coefficientin flowering period, the average minimum temperature during flowering period, the average maximum temperature in March.
The methods of variation statistics were used in the study during the analysis and processing of experimental data, as well as in predicting the final conclusions. Using the linear dependence function: Y = a0 + a1X1 + a2X2 + … + AnXn allowed us to formulate a multifactor model:
Y= 5,998424+1,068352Х1+0,810361Х2
The development of the latter one made it possible to predict the sweet cherry yield depending on the influence of environmental stressors.

Keywords: yield, sweet cherry, weather factors, multifactorial model, temperature, precipitation, humidity.

Вплив погодних умов вегетаційного періоду на збереженість яблук в умовах південного степу України

Номер, рік
1(71), 2013


С.С. Байбєрова, асистент
М.Є. Сердюк, кандидат сільськогосподарських наук, доцент
Таврійський державний агротехнологічний університет

Досліджено вплив погодних умов вегетаційного періоду на збереженість яблук. Встановлено, що обробка антиоксидантними композиціями нівелює вплив багатьох негативних погодних чинників і дозволяє розробити моделі прогнозування збереженості яблук за одним із них.

Ключові слова
яблука, збереженість, кількість опадів, сума активних температур, гідротермічний коефіцієнт, коефіцієнт кореляції