Shebanin V., Atamanyuk I., Gorbenko O., Dotsenko N. Determining the optimal parameters of machines for processing the seed mass of vegetable and melon crops

UDC 631.361.8

 

Shebanin V.

Atamanyuk I.

Gorbenko O.

Dotsenko N.

 

The article presents a method of mathematical modeling, which is based on a nonlinear canonical distribution of a random vector, to determine the optimal parameters of machines for the separation of seed mass of vegetable and melons. It is presented a block diagram of the procedure for calculating the parameters of canonical decomposition.The method of mathematical modeling was tested in the study of the technological process of separating melon seeds in the experimental setup. There are described third-order mathematical models for purity and seed loss, that presented the technological process of a melon seed separation based on a nonlinear canonical decomposition of a random vector. Using this method allows to obtain mathematical models of technological processes for an arbitrary number of known input parameters that are used to evaluate seed characteristics, nonlinearity order, and stochastic coupling characteristics. The proposed mathematical model allows to take into account the peculiarities of technological processes of seed separation and, as a result, to achieve the maximum quality of division of seeds of melons. There are the described stages of the mathematical modeling method, which is based on a nonlinear canonical distribution of a random vector, to determine the optimal parameters of machines for the separation of seed mass of vegetable and melons. The method is tested on the basis of the technological process of seed separation using an experimental sample of a cylindrical separator. Statistical experimental data processing allows to obtain third-order mathematical models for purity and seed loss, describing the process of separation of melon seeds on a cylindrical machine. The results of the experimental studies confirmed the high accuracy of the proposed method, which can be used to simulate an arbitrary process with stochastic properties. Refinement of the parameters of the working bodies of machines on the basis of advanced mathematical models will facilitate the development of industrial seed production.

Keywords: vegetable and melon crops, seed mass separation, mathematical method, optimal parameters.

 

References:

  1. Brityk O. Sorta y gybrydi baxchevix kultur. Ovoshhevodstvo. 2010. # 8(68). C. 67-69
  2. Babenko D.V., Gorbenko O.A., Docenko N.A., Kim N.I. Doslidzhennya zasobiv mexanizaciyi otrymannya nasinnya ovoche-bashtannyx kultur. Visnyk agrarnoyi nauky Prychornomor’ya. 2016. Vyp. 4(92) S.137-142
  3. Lymar A. O., Lymar V.A. Bashtannycztvo Ukrayiny: monografiya. 2-ge vyd., pererob. ta dop. 2012. 372 s.
  4. Pastushenko A.S., Dubrovin V.O. Proxodzhennya nasinnya ovoche-bashtannyx kultur kriz otvory resheta davylno-separuyuchoyi mashyny. Naukovyj visnyk Nacionalnogo universytetu bioresursiv i pryrodokorystuvannya Ukrayiny. 2011. Vyp. 166. Ch. 2. S. 97-103.
  5. Abezyn V.G., Shaprov M.N., Motoryn V.A., Bespalova O.N. Texnologyya y texnycheskye sredstva proyzvodstva y podgotovky k posevu semyan baxchevix kultur. Nyzhnevolzhskogo agrounyversytetskogo kompleksa: nauka y visshee professyonalnoe obrazovanye. Texnycheskye nauky. 2017. #1(45). S. 181-187.
  6. Kolmogorov A. N. Ynterpolyrovanye y ekstrapolyrovanye stacyonarnix sluchajnix posledovatelnostej. Yzv. AN SSSR. ser. matematycheskaya. 1941. T. 5, #1. S. 3–14.
  7. Kalman R. E. A New Approach to Linear Filtering and Prediction Problems. Trans. ASME Series D, J. Basic Engg., v. 82 (Series D), 1960. P. 35–45.
  8. Wiener N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications. MIT Press, New-York, 1964.
  9. Kudryczkyj V. D. Fyltracyya, ekstrapolyacyya y raspoznavanye realyzacyj sluchajnix funkcyj. K.: FADA, LTD, 2001. 176 s.
  10. Proxorenkov A. M., Kachala N.M. Yspolzovanye metodov nechetkoj logyky dlya opredelenyya klassyfykacyonnix xarakterystik sluchajnix processov. Vestnyk MGTU. 2006. Tom 9, #3. S. 514-521.
  11. Atamanyuk, I. P. Algorithm of extrapolation of a nonlinear random process on the basis of its canonical decomposition. J. Kibernetika i Sistemnyj Analiz. 2005. #2. P. 131–138.
  12. Atamanyuk, I. P. Optimal Polynomial Extrapolation of Realization of a Random Process with a Filtration of Measurement Errors. Journal of Automation and Information Sciences. Volume 41, Issue 8, Begell House, USA, pr. 38-48 (2009)
  13. Atamanyuk I., Kondratenko Y., Shebanin V., Mirgorod V. Method of polynomial predictive control of fail-safe operation of technical systems. In The Experience of Designing and Application of CAD Systems in Microelectronics IEEE. 2015. P. 248-251.
  14. Pastushenko A.S., Gorbenko O.A., Ogiyenko M.M., Pastushenko S.I. Cy`lindry`chny`j separator nasinnya ovoche-bashtanny`x kul`tur. Nomer patentu: 30735. Opublikovano: 11.03.2008 Rezhy`m dostupu: http://uapatents.com/2-30735-cilindrichnijj-separator-nasinnya-ovoche-bashtannikh-kultur.html
  15. Ogiyenko M. M. Provedennya eksperymentalnyx doslidzhen mashyn dlya viddilennya nasinnya ovoche-bashtannyx kultur. Visnyk agrarnoyi nauky Prychornomor’ya. 2012. Vyp. 3. S. 195-202.
  16. Razrabotka mexanyzy`rovannix texnologyj poluchenya semyan ovoshhebaxchevix kultur y sozdanye rabochyx organov mashyn dlya semenovodstva. Yssledovanyya: otchet pro NY`R (promezh.). Nykolaevskyj gosudarstvennij agrarnij unyversytet, Ynstytut yuzhnogo ovoshhevodstva y baxchevix. Nykolaev, 2011. 189 s.