Principal Component Analysis (PCA) of the reproductive traits in the Large White sows

UDC 636.4.034 / 57.087.01

DOI: 10.31521/2313-092X/2019-2(102)-11


S. Kramarenko
A. Kramarenko
S. Lugovoy
A. Lykhach
V. Lykhach


      The objective this work was evaluation of the sow’s reproductive traits using Principal Component Analysis (PCA). The population used for the present study is from a pig farm managed by ‘Tavriys’ki Svyni’ Ltd (Kherson region, Ukraine), where the collected data between January 2007 and December 2017 was analyzed. In total, 633 farrow observations were available from 138 Large White (LW) sows.
     Variables measured and derived included total no. piglets born (TNB), no. piglets born alive (NBA), no. of stillborn piglets (NSB), freq. of stillborn piglets (FSB), average piglet birth weight (APBW), pre-weaning mortality in piglets (PWM), no. weaned piglets (NW) and average piglet weaning weight (APWW).
The parities 9 and higher were combined into one parity class (9+), which gave 9 levels for the parity effect. Effect of season of farrowing was analysed in 12 periods: January, February, …, December.
     Litter sizes at birth (TNB and NBA) were positively correlated with no. weaned piglets (NW), but were negatively correlated with piglet birth (APBW) and weaning (APWW) weights. The positive phenotypic correlation between TNB and NSB (and FSB) indicates that piglets born in a large litter are more likely to die than those born in smaller ones.
     Three principal components (PC) accounted for near 80% of the dependency structure existing among the eight reproductive traits in the LW sows. The first principal component (PC1) accounted for 33.6% of the total variance and was influenced by TNB and NBA. Thus, PC1 may be interpreted as “potential fecundity of sows”. The second principal component (PC2) accounted for 27.1% of the total variance and linked to NBA (positive), NSB and FSB (negative). Therefore, PC2 may be interpreted as “realised fecundity of sows”. At last, the third principal component (PC3) derived from the LW sow’s reproductive traits accounted for 18.7% of the total variance and contrasted sows having large no. weaned piglets and low pre-weaning mortality in piglets with sows having small no. weaned piglets and high pre-weaning mortality in piglets.
     Number of parity had a significant effect on the sow’s reproductive traits. Thus, TNB in the LW sows increased to the 5th parity and then decreased. Liveborn litter size (NBA) decreased after the 4th parity rapid. Season of farrowing did not significantly affect potential and realised fecundity of sows. However, the number of weaned piglets was the highest in sows farrowed in June-September, and the lowest in sows farrowed in winter.

     Keywords: reproductive traits, Principal Component Analysis (PCA), parity, season of farrowing, sows.


  1. Borges, V. F., Bernardi, M. L., Bortolozzo, F. P., & Wentz, I. (2005). Risk factors for stillbirth and foetal mummification in four Brazilian swine herds. Preventive Veterinary Medicine, 70(3-4), 165-176. doi: 1016/j.prevetmed.2005.03.003
  2. Canario, L., Cantoni, E., Le Bihan, E., Caritez, J.C., Billon, Y., Bidanel, J.P., et al. (2006). Between-breed variability of stillbirth and its relationship with sow and piglet characteristics. Journal of Animal Science, 84(12), 3185-3196. doi: 10.2527/jas.2005-775
  3. Fahmy, M. H., & Bernard, C. S. (1972). Interrelations between some reproductive traits in swine. Canadian Journal of Animal Science, 52(1), 39-45. doi: 10.4141/cjas72-004
  4. Franci, O., Pugliese, C., Bozzi, R., Acciaioli, A., & Parisi, G. (2001). The use of multivariate analysis for evaluating relationships among fat depots in heavy pigs of different genotypes. Meat Science, 58(3), 259-266. doi: 10.1016/S0309-1740(00)00163-7
  5. Gregory, N. G., & Whelehan, O. P. (1983). Skull shape in relation to carcass fatness in pigs. Journal of the Science of Food and Agriculture, 34(12), 1397-1403. doi:1002/jsfa.2740341213
  6. Halafyan, A.A. (2007). STATISTICA 6. Statisticheskij analiz dannyh [Statistical data anaysis]. Moscow: «Binom-Press» Ltd. (in Russian).
  7. Hanenberg, E. H. A. T., Knol, E. F., & Merks, J. W. M. (2001). Estimates of genetic parameters for reproduction traits at different parities in Dutch Landrace pigs. Livestock Production Science, 69(2), 179-186. doi: 10.1016/S0301-6226(00)00258-X
  8. Hu, Y., Suzuki, T., Noguchi, G., Li, Y., Kitamura, Y., & Satake, T. (2007). Study on evaluation of carcass traits and pork quality using principal component analysis. Nogyo Shisetsu (Journal of the Society of Agricultural Structures, Japan), 37(4), 173-182.
  9. Imboonta, N., Rydhmer, L., & Tumwasorn, S. (2007). Genetic parameters for reproduction and production traits of Landrace sows in Thailand. Journal of Animal Science, 85(1), 53-59. doi: 10.2527/jas.2005-708
  10. Karlsson, A. (1992). The use of principal component analysis (PCA) for evaluating results from pig meat quality measurements. Meat Science, 31(4), 423-433. doi: 10.1016/0309-1740(92)90025-Y
  11. Kramarenko, S. S., Lugovoy, S. I., Lykhach, A. V., Kramarenko, A. S., & Lykhach, V. Y. (2018). A comparative study of the reproductive traits and clustering analysis among different pig breeds. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series “Agricultural sciences”, 20(84), 21-26. doi: 10.15421/nvlvet8404
  12. Kramarenko, S. S., Lugovoy, S. I., Lykhach, A. V., Kramarenko, A. S., Lykhach, V. Ya., & Slobodianyk, A. A. (2019). Effect of genetic and non-genetic factors on the reproduction traits in Ukrainian Meat sows. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies. Series “Agricultural sciences”, 21(90), 3-8. doi: 10.32718/nvlvet-a9001
  13. Leenhouwers, J. I., van der Lende, T., & Knol, E. F. (1999). Analysis of stillbirth in different lines of pig. Livestock Production Science. 57(3), 243-253. doi: 10.1016/S0301-6226(98)00171-7
  14. Leigh, A. O. (1977). Litter performance characteristics of pigs in tropical south-western Nigeria 1. Breed differences and effects of some non-genetic sources of variation. Animal Science, 24(3), 323-331. doi: 10.1017/S0003356100011831
  15. Love, R. J., Evans, G., & Klupiec, C. (1993). Seasonal effects on fertility in gilts and sows. Journal of Reproduction and Fertility. Supplement, 48, 191-206. PMID:8145204
  16. Okoro, V. M., Ogundu, U. E., Okani, M., Oziri, I., Eneowo, O., Olisenekwu, O. T., et al. (2015). Principal Component Analysis of Conformation and Blood Marker Traits at Pre-and Post-Weaning Stages of Growth in F2 Crossbred Nigerian Indigenous × Landrace Pigs. Animal Biotechnology, 26(4), 243-250.
  17. Ros-Freixedes, , Sadler, L. J., Onteru, S. K., Smith, R. M., Young, J. M., Johnson, A. K., et al. (2014). Relationship between gilt behavior and meat quality using principal component analysis. Meat Science, 96(1), 264-269. doi:  10.1016/j.meatsci.2013.07.004
  18. Schwarz, T., Nowicki, J., & Tuz, R. (2009). Reproductive performance of Polish Large White sows in intensive production: effect of parity and season. Annals of Animal Science, 9(3), 268-277.
  19. Shebanin, V. S., Melnik, S. I., Kramarenko, S. S., & Ganganov, V. M. (2008). Analіz strukturi populyatsіy [Analysis of population structure]. MSAU Publishing House, Mykolayiv (in Ukrainian).
  20. Southwood, O. I., & Kennedy, B. W. (1991). Genetic and environmental trends for litter size in swine. Journal of Animal Science, 69(8), 3177-3182. doi: 10.2527/1991.6983177x
  21. Tantasuparuk, W., Lundeheim, N., Dalin, A.M., Kunavongkrit, A., & Einarsson, S. (2000). Reproductive performance of purebred Landrace and Yorkshire sows in Thailand with special reference to seasonal influence and parity number. Theriogenology, 54(3), 481-496. doi: 10.1016/S0093-691X(00)00364-2
  22. van Steenbergen, E. J. (1989). Description and evaluation of a linear scoring system for exterior traits in pigs. Livestock Production Science, 23(1-2), 163-181. doi: 10.1016/0301-6226(89)90012-2
  23. Zaleski, H. M., & Hacker, R. R. (1993). Effect of oxygen and neostigmine on stillbirth and pig viability. Journal of Animal Science, 71(2), 298-305. doi: 10.2527/1993.712298x
  24. Young, L. D., Johnson, R. K., & Omtvedt, I. T. (1977). An analysis of the dependency structure between a gilt’s prebreeding and reproductive traits. II. Principal component analysis. Journal of Animal Science, 44(4), 565-570. doi: 10.2527/jas1977.444565x
  25. Young, L. D., Pumfrey, R. A., Cunningham, P. J., & Zimmerman, D. R. (1978). Heritabilities and genetic and phenotypic correlations for prebreeding traits, reproductive traits and principal components. Journal of Animal Science, 46(4), 937-949. doi: 10.2527/jas1978.464937x.

A. Kramarenko, S. Kramarenko, N. Kuzmichova. Entropy and information analysis of the growth traits in the Southern Meat cattle breed heifers

UDC 636.2.034 / 57.087

DOI: 10.31521/2313-092X/2018-4(100)-13

A. Kramarenko
ORCID ID: 0000-0002-2635-526Х
S. Kramarenko
ORCID ID: 0000-0001-5658-1244
N. Kuzmichova
ORCID ID: 0000-0002-5806-3851

The relationships among growth traits in different ages of 232 heifers Southern Meat Cattle (SMC) breed and genotype and environmental factors were studied using a multifactorial ANOVA, and additionally with a entropy and information analysis (EIA).

The traits evaluated were birth weight (BW), weaning weight (WW), weight at year (YW) and weight at 15 (М15), 18 (М18) and 24 months of age (M24). The 21-year period studied (year of heifer’s birth from 1986 to 2006) was classified into three periods as follows: Gen1 – 1986-1992, Gen2 – 1993-1999, Gen3 – 2000-2006. Experimental heifers originated from four sire lines – Ideal 133, Sanil 8, Loksher 302 and Signal 475. 

Firstly, we tested the hypotheses that weight traits were influenced by the sire line (factor ‘Origin’) and by of heifer’s year of born (factor ‘Generation’). Differences between groups were evaluated with a three-factorial ANOVA (with ages as a repeated measures factor). All statistical analyses were performed using STATISTICA (StatSoft Inc., USA).

A repeated measures ANOVA revealed significant main effects for generation, F2; 218 = 15.50; p < 0.001, and age of heifers, F5; 1090 = 2064.91; p < 0.001. Additionally, there was a significant interaction between generation and age of heifers, F10; 1090 = 15.55; p < 0.001 and between generation, origin and age of heifers, F30; 1090 = 1.94; p = 0.002.

The lowest entropy values were associated with BW, which did not depend on heifer’s origin and generation (in both cases: p > 0.05). This may be due to the long period (near 20 years) of successful breeding program with the SMC breed.

Key words: entropy and information analysis (EIA), growth traits, heifers, beef cattle.


  1. Kramarenko, S. S. (2005). Osobennosti ispol’zovaniya entropiyno-informatsionnogo analiza dlya kolichestvennykh priznakov biologicheskikh ob”ektov. zvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 7,1, 242-247 [in Russian].
  2. Kramarenko, A. S., Kuz’micheva, N. I. & Kramarenko, S. S. (2018). Analiz glavnykh komponent rostovykh priznakov yuzhnoy myasnoy porody skota. Stiinta agricola, 1, 126-131 [in Russian].
  3. Kramarenko, S. S., & Lugovoy, S. I. (2013). Ispol’zovanie entropiyno-informatsionnogo analiza dlya otsenki vosproizvoditel’nykh kachestv svinomatok. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta, 9, 107, 58-62 [in Russian].
  4. Lykhach, V. Ya., Kramarenko, S. S. & Shebanin, P. O. (2015). Vykorystannia entropiino-informatsiinoho analizu dlia otsinky vidtvoriuvalnykh yakostei pomisnykh svynomatok. Ukrainian Black Sea region agrarian science, 1 (82), 187-194 [in Ukrainian].
  5. Vdovychenko, Yu. V., Voronenko, V. I. & Naidonova, V. O. et al.(2012). Miasne skotarstvo v stepovii zoni Ukrainy. Nova Kakhovka: PYEL [in Ukrainian].
  6. Khalafyan, A. A. (2007). STATISTICA 6: Statisticheskiy analiz dannykh. Moskva [in Russian].
  7. Patrieva, L. S. & Kramarenko, S. S. (2007). Entropiinyi analiz kilkisnykh oznak dlia selektsiinoi otsinky batkivskoho stada miasnykh kurei. Animal Breeding and Genetics, 41, 149-154 [in Ukrainian].
  8. Pidpala, T. V., Kramarenko, O. S. & Zaitsev Ye. M. (2018). Vykorystannia entropiinoho analizu dlia otsinky rozvytku oznak molochnoi khudoby holshtynskoi porody. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni S. Z. Hzhytskoho, 20, 84, 3-8 [in Ukrainian].
  9. Pidpala, T. V., Kramarenko, S. S. & Bondar S. O. (2016). Zastosuvannia entropiinoho analizu dlia otsinky selektsiinykh oznak molochnoi khudoby. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu, 7, 89-93 [in Ukrainian].
  10. Khvostyk, V. P. (2011). Entropiinyi analiz yakisnykh pokaznykiv yaiets husei stvoriuvanoi dymorfnoi populiatsii / В. П. Хвостик. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni S. Z. Gzhytskoho, 13, 4(50), Ч. 3, 324-327 [in Ukrainian].
  11. Borowska, A., Reyer, H. & Wimmers K. et al. (2016). Detection of SNP effects on feed conversion ratio in pigs based on entropy approach . Acta Fytotechnica et Zootechnica, 19 (3), 103-105.
  12. Borowska, A., Reyer, H. & Wimmers K. et al. (2017). Detection of pig genome regions determining production traits using an information theory approach. Livestock Science, 205, 31-35.
  13. Bourdon, R. M. & Brinks, J. S. (1982). Genetic, environmental and phenotypic relationships among gestation length, birth weight, growth traits and age at first calving in beef cattle. Journal of Animal Science, 55 (3), 543-553.
  14. Dobek, A., Steppa, R. & Molinski, K. et al. (2013). Use of entropy in the analysis of nominal traits in sheep. Journal of applied genetics, 54 (1), 97-102.
  15. Gregory, K. E., Cundiff, L. V. & Koch R. M. (1991). Breed effects and heterosis in advanced generations of composite populations for growth traits in both sexes of beef cattle. Journal of animal science, 69 (8), 3202-3212.
  16. Holland, M. D. & Odde K. G. (1992). Factors affecting calf birth weight: a review. Theriogenology, 38 (5), 769-798.
  17. Souza Dantas Muniz, C. A. D., Queiroz, S A. D. &Mascioli D. S. et al. (2014). Análise de componentes principais para características de crescimento em bovinos de corte. Semina: Ciencias Agrarias, 35 (3), 1569-1576.
  18. Pelykh, V. H & Chernyshov, I. V.(2014). Entropiinyi analiz heterohennosti svynomatok riznykh napriamiv produktyvnosti za pokaznykom vyrivnianosti hnizd pid chas narodzhennia. Visnyk ahrarnoi nauky, 2, 36-37 [in Ukrainian].