The impact of biological products on winter wheat productivity and economic and energy efficiency of the technology of its cultivation in conditions of the Southern Ukraine

UDC 631.147:631.874:631.51(477.7)

DOI: 10.31521/2313-092X/2019-1(101)-6

 

R. Vozhegova
ORCID ID: 0000-0002-3895-5633
A. Kryvenko
ORCID ID: 0000-0002-2133-3010

 

       

          For the formation of high and high-quality winter wheat crops, it is necessary to determine the optimum level of fertilization and the ratio of the main nutrient elements, taking into account agrochemical fertility indices for each field, as well as its local areas. It is important to use sulphur, zinc, manganese, and iron for the cultivation of seeds and in the system of folic feeding. According to the results of field studies, it has been established that on the average level of fertility of chernozem, the southern efficacy of Gumatal Nano, Azotofit and Stimpo is manifested differently. Thus, for the influence on the productivity of winter wheat, the preparation Gumatal Nano is allocated, which provides significant yield gains in relation to the corresponding background control at the level from 0.12 to 0.95 t/ha, but for obtaining the grain of food quality it should be used under pre-planting conditions making N64P64K64. The Azotophyte preparation should be used on an uncooked background irrespective of its predecessor, or with the introduction of N32P32K32 in the cultivation of winter wheat in crop rotation after cross-flowering crops (increase in grain yield from 0.18 to 0.35 t/ha). The use of Azotophyte after a black steam (seed cultivation + three times foliar fertilization) ensures the formation of grain quality parameters at the level of the third class irrespective of the rate of application of mineral fertilizers (protein – 12,15%, gluten 20,4%). The use of the Stimpo preparation with an average fertility level of southern black earth at all levels of mineral nutrition can yield increments less than or within the smallest significant difference regardless of the predecessor. Without the use of mineral fertilizers for the use of the drug Stimpo formed grain of grade 5, to obtain the third grade grain, it is advisable to use this drug against a background of mineral fertilizers in a dose N32P32K32. The highest levels of net profit of 17.5 thousand UAH/ha and profitability of 184.1% were obtained in the variant with the introduction of the main fertilizer at a dose of N32P32K32 in conjunction with the biomedicine Gumatal Nano. The best energy efficiency with an increase in energy at the level of 43.5-44.7 GJ/ha, the energy coefficient of 2.43-2.59 is indicated in variants with the introduction of the main fertilizer in a dose of N32P32K32 in combination with non-carbohydrate feeding with the biomedical Gumatal Nano nanotube and nitric fertilizer N60.

       Key words: winter wheat, biological products, predecessor, mineral fertilizers, yield, quality, economic and energy efficiency.

Reference

  1. Hrytsayenko, Z. M., Ponomarenko S. P., Karpenko V. P., &Leontyuk I. B. (2008) Biolohichnoaktyvnirechovyny v roslynnytstvi. Kyiv: Nichlava.
  2. Bykina, A. M., &Kosyak, A. S. Humatyyakfaktoroptymizatsiyiumovzhyvlennyasoyi. Retrievedfrom https://www.sworld.com.ua/konfer48/42.pdf.
  3. Ivankevych, M. (2009) Vplyvstymulyatorivrostunaurozhaynistʹ zernovykhkulʹtur. Tekhniko-ekonomichniaspektyrozvytkutavyprobuvannyanovoyitekhniky i tekhnolohiydlyasilʹsʹkohohospodarstvaUkrayiny. Doslidnytsʹke, 13 (27), 223–225.
  4. Kononchuk, O. B., Pyda S. V., &HryhoryukS. V. (2014) VplyvristrehulyatorivRehoplant i Stymponasymbiotychnusystemutaproduktyvnistʹ kvasoli. Nauk. zap. Ternop. Nats. ped. un-tu, Ser. Biol.,3(60), 109–114.
  5. Smetanko, O. V., &Velver, M. O. (2017) Urozhaynistʹ pshenytsiozymoyitayakistʹ zernapryzastosuvannibiolohichnykhdobryv. AhrarnanaukataosvitaPodillya: Zb. nauk. pratsʹ mizhn. n-pr. konf.Ternopil:Krok, 1, 135–137.
  6. Biorehulyatoryroslyn: rekomendatsiyipozastosuvannyu (2015). Kyiv: Ahrobiotekh, 35.
  7. GOST 13586.1-68. Zerno. Metodyopredelenyyakolychestva y kachestvakleykovyny v pshenytse (s yzmenenyyamy 1,2) (2009). Moskva: Standartynform,, 6.
  8. DSTU 4117:2007. Zernotaproduktyyohopererobky. Vyznachennyapokaznykivyakostimetodominfrachervonoyispektroskopiyi. Kyiv: DerzhspozhyvstandartUkrayiny, 7.
  9. GOST 10842-89 (YSO 520-77). Zernozernovykh y bobovykhkulʹtur y semyanmaslychnykhkulʹtur. Metodopredelenyyamassy 1000 zerenyly 1000 semyan. [Chynnyyvid 1995-06-01.]. Yzd. ofyts. Moskva: Standartynform, 4.
  10. GOST 10840-64. Zerno. Metodyopredelenyyanatury. [Chynnyyvid 1988-07-01]. Yzd. ofyts. Moskva: Standartynform, 2009. 4.
  11. GOST 13586.5-93. Zerno. Metodopredelenyyavlazhnosty. Yzd. ofyts. Mezhhosudarstvennyysonetpostandartyzatsyy, metrolohy y sertyfykatsyy. Mynsk, 1993. 8.
  12. Yakistgruntuvidbyrannyaprob (2005): DSTU 4287:2004.Kyiv: UkrNDNTS, 9.
  13. Andriychuk, V. H. (2002) Ekonomikaahrarnykhpidpryyemstv. Kyiv: KNEU. 624.
  14. Dorohuntsov, S. I., Mukhovykov, A. M., &Khvesyk, M. A. tain. (2004) Optymizatsiyapryrodokorystuvannya v 5-ty t.: navchalniy posibnyk. T. 1. Pryrodniresursy: ekoloho-ekonomichnaotsinka. Kyiv: Kondor, 291.
  15. Ushkarenko, V. O., Lazar, P. N., Ostapenko, A. I., &Boyko, I. O. (1997) Metodykaotsinkybioenerhetychnoyiefektyvnostitekhnolohiyvyrobnytstvasilskohospodarskykhkultur. Kherson: Kolos, 21.
  16. Zhuchenko, A. A., Kazantsev, E. F., &Afanas’yev, V. N. (1983) Energeticheskiyanaliz v selskomkhozyaystve. Kishinev: Shtiintsa, 82.

O. L. Rudik, R. A. Vozhehova. The impact of the measures of a pre-harvest complex on the moisture loss of oil-bearing flax under conditions of the South of Ukraine.

UDC 633.854.54: 631.547.76: 631.572

DOI: 10.31521/2313-092X/2018-4(100)-9

O. L. Rudik
R. A. Vozhehova

It was established that desiccation or cutting of oil flax plants and laying them in swaths, in spite of their maturation conditions increases moisture losses. It reduces conventional losses of seeds and straw and has a positive impact on the infestation, physical and mechanical parameters of straw for industrial use. The fastest dehydration, 4.9 – 5.52 % per day throughout the first four days after treatment, is provided by the desiccation with the preparations Basta 2 liters per hectare and Reglon Super 3 liters per hectare.

Key words: oil-bearing flax, harvesting technology, desiccation, seeds, straw, dehydration.

Reference

  1. Kulmaa, A., Zuka, M., Longc, S.H. & et al. (2015). Biotechnology of fibrous flax in Europe and China. Industrial Crops and Products Industrial Crops and Products.68, 50–59.
  2. Ingram, A. J., Parbtani, A., Clark, W. F. & et al. (1995). Effects of Flaxseed and Flax Oil Diets in a Rat-96 Renal Ablation Model. American Journal of Kidney Diseases. 25 (Vol. 2), 320-329.
  3. Lima L.S., Palin M.F., Santos G.T. & et al. (2015). Effects of supplementation of flax meal and flax oil on mammary gene expression and activity of antioxidant enzymes in mammary tissue, plasma and erythrocytes of dairy cows. Livestock Science. 176, 196–204.
  4. Rudik, A. L. (2016). Raw material potential of oil-bearing flax and prospects of its application in medicine. Tavriiskyi naukovyi visnyk. 96, 104-111 [in Ukrainian].
  5. Gonzalez-Garcia, S., Hospido, A., Feijoo, G., & Moreira, M.T. (2010). Life cycle assessment of raw materials for non-wood pulp mills: Hemp and flax.Resources, Conservation and Recycling. 54 (Vol. 11), 923-930. Doi: 10.1016/j.resconrec.2010.01.011. Retrieved from: https://www.sciencedirect.com/science/article/pii/S0921344910000297?via%3Dihub.
  6. Artemov, A.V. (2003). Otraslevaya nauka l’nyanogo kompleksa Rossii: problemy i perspektivy. Rossiyskiy khimicheskiy zhurnal (zhurnal Rossiyskogo khimicheskogo obshchestva im. D.I. Mendeleeva). XLVII (Vol. 5), 68-75. [in Russian].
  7. Haaga, K., Padovanib, J., Fitac, S. & et al. (2017). Influence of flax fibre variety and year-to-year variability on composite properties. Industrial Crops and Products Industrial Crops and Products.98, 1-9.
  8. Prasada, V., Suresh, D., Joseph, M.A., Sekara, K. & Mubarak, A. (2018). Development Of Flax Fibre Reinforced Epoxy Composite With Nano Tio2 Addition Into Matrix To Enhance Mechanical Properties. Materials Today: Proceedings. 5, 11569-11575.
  9. Lazko, J., Dupré, B. & Dheilly, R.M. (2011). Quéneudec M. Biocomposites based on flax short fibres and linseed oil. Industrial Crops and Products Industrial Crops and Products.33, 317-324.
  10. Ouagne, P., Barthod-Malat, B., Evon, Ph. & et al. (2017). Fibre Extraction from Oleaginous Flax for Technical Textile Applications: Influence of Pre-processing parameters on Fibre Extraction Yield, Size Distribution and Mechanical Properties. Science Direct 3rd International Conference on Natural Fibers: Advanced Materials for a Greener World, ICNF 2017, 21-23 June 2017, Braga, Portugal Procedia Engineering. 200, 213-220.
  11. Bayerl, T., Geith, M., Somashekar, A. A., & Bhattacharyya, D. (2014). Influence of fibre architecture on the biodegradability of FLAX/PLA composites.International Biodeterioration & Biodegradation. 96, 18-25.
  12. Deng, Y., Paraskevas, D., Tian, Y. & et al. (2016). Life cycle assessment of flax-fibre reinforced epoxidized linseed oil composite with a flame retardant for electronic applications. Journal of Cleaner Production. 133, 427-438.
  13. Chekhova, I.V., Chekhov, S.A. & Shkurko, M.P. (2017). Domestic market of flax. Economy of Ukraine. 2017. № 1. С. 52–63. [in Ukrainian].
  14. Chekhov, A. V., Lapa, O. M., Mishchenko, L. Yu. & Poliakova, I. O. (2007). Lon oliinyi: biolohiia, sorty, tekhnolohiia vyroshchuvannia. Kyiv: Ukrainska akademiia ahrarnykh nauk [in Ukrainian].
  15. Jacobsz, M.J. & Van der Merwe, W.J.C. (Comps.). (2012). Production guidelines for flax (Linum usitatissimum L.). Canada: Arc-institute for industrial crops, Department of agriculture, Forestry and Fisheries Directorate: plant production.
  16. Dudariev, I. M. (2014). Osoblyvosti zbyrannia lonu oliinoho. Silskohospodarski mashyny. 28, 11-17. [in Ukrainian].