Issue 2 (110), 2021

 

Титульний лист

Зміст

ECONOMICAL SCIENCES

Poltorak A., Melnyk O., Baryshevska I., Ihnatenko Zh. Alternative sources of funding for the development of united territorial communities 4
Zelinska H., Andrusiv U. Globalization challenges and competitiveness of the enterprise’s personnel 11
Ksonzhyk I., Petrova O. Information support for development of rural green tourism enterprises in Ukraine in conditions of COVID-19 pandemic
19
Lunkina T., Burkovskaya A., Gulich K. Application of financial technologies in the banking system of Ukraine
27
Barabash L.Transformation of the tax system of Ukraine in order to facilitate the development of agricultural production 36
AGRICULTURAL SCIENCES
Skrylnyk Ie.,HetmanenkoV.,KutovaА.,Moskalenko V. Potential resources of organic raw materials in Ukraine and the approaches to their management for increasing soil organic carbon stocks
45
Dehtiarov Yu.,ChekarO. Use of electrophysical indicators during growing strawberries on drop irrigation
54

Siabruk O., Naydenova O., Get’man Ya.Influence of biological products on СО₂ emission and microflora of the root zone of corn

63
Bilinska O.,KulkaV.,SametsN.,GolodR.The influence of application of the preparation Albit on formation of seed productivity of supplemental potatoe material
71
TECHNICAL SCIENCES

Babenko D.,Dotsenko N.,Gorbenko O.,Kim N.Justification of the implementation of a separator of seeds of vegetable and melon crops as part of the technological line

80
Popov A., Novikov O., Savenkov O., Sadovuy O., Kondrateva O. Influence the misalignment and bending of the rotary shaft on the force factors which appear in its toothed connections 88
Shlapak G., Agunova L., Azarova N. Vegetable components in technology production of meat products 95
ДУМКА ВЧЕНОГО

Mirzayev N.  Сovid-19 pandemic and innovative agrarian economy

104
Rahimli  H. Evaluation of the role of intellectual capital in innovative economic growth in the framework of knowledge economy 110

Rahimli H. Evaluation of the role of intellectual capital in innovative economic growth in the framework of knowledge economy

UDC [005.336.1-047.44]:330.341.1: [330.1:37.014]

 

Rahimli H.

 

The article analyses the role of intellectual capital in innovative economic growth within the knowledge economy. To this end, the essence of social capital phenomena, one of the modern concepts of human capital and institutional economy, which are the main components of intellectual capital, is explained, as well as the impact of research and development activities on economic growth, one of the main indicators of scientific development.

 Key words: knowledge economy, intellectual capital, human capital, social capital, research and development, economic growth.

References:

  1. Erkuş A. (2006), Entelektüel sermaye: bir uygulama. [Intellectual capital: an application]. Erzurum [in Turkish].
  2. Muradov A. (2018), Bilik iqtisadiyyati quruculuğunda insan kapitalinin roluna dair nəzəri mülahizələr. [Prospective opinions on the role of human capital in the founding of scientific economics]. Peşә tәhsili vә insan kapitalı. Cild 1, №4, s.47-52. [in Azerbaijani].
  3. Arrow, K. J. (1974), The Limits of Organization. New York: W.W. Norton,.
  4. Campbell McConnell, Stanley Brue, Sean Flynn. (2009), Economics: principles, problems and policies. McGraw-Hill Series in Economics.
  5. Yıldız D. (2020), Büyük işletmelerde entelektüel sermayenin yenilikçiliğe dayali rekabet üstünlüğüne etkisi: Eskişehir’de kurulu işletmeler üzerinde bir araştirma. [The effect of intellectual capital on innovative competitive advantage in large enterprises: A study on enterprises established in Eskişehir]. Giresun, [in Turkish].
  6. Bağırzadə E. (2018), Bilik iqtisadiyyatı, iqtisadi artım və dövlət. [Knowledge economy, economic growth and state]. UNEC ekspert jurnalı (5). [in Azerbaijani].
  7. Ciğerim E. (2020), Entelektüel sermaye ve bilgi yönetiminin performansa etkileri. [The effects of intellectual capital and knowledge management on performance]. Gebze, [in Turkish].
  8. Tahirova G. [2014], Sosial kapitalın iqtisadiyyata təsiri. [The impact of social capital on the economy]. Mərkəzi bank işçi məqalələri silsiləsi. № 05. [in Azerbaijani].
  9. Glenn-Marie Lange, Quentin Wodon, Kevin Carey. (2018), The changing Wealth of Nations 2018. Building a sustainable future. International Bank for Reconstruction and Development / The World Bank.
  10. Rəhimli H. (2021), Müasir universitet modelinin formalaşması şəraitində elm, təhsil və istehsalın vəhdəti. [Integration of science, education and production in the formation of a modern university model]. Geostrategiya, №3 (63), səh, 149-154. [in Azerbaijani].
  11. Rəhimli H. (2021), Sahibkarlıq universitetlərinin insan kapitalı və sosial kapitalın inkişafında rolu. [The role of entrepreneurship universities in the development of human capital and social capital]. AMEA-nın Xəbərləri. İqtisadiyyat seriyası (may). [in Azerbaijani].
  12. Mohamed İ. A. (2019), Entelektüel sermaye yatirimi ve inovasyon üzerindeki rolü: ulusal petrol kurumuna bağli Libya petrol şirketlerinde ampirik bir çalişma. [Intellectual capital investment and its role in innovation: an empirical study in Libyan oil companies affiliated with the national oil agency]. Kastamonu, [in Turkish].
  13. Jiang Shuguang Sun Tao. (2015), Beliefs and Economic Growth: Cross National Evidence Based on the World Values Survey (WVS).
  14. Mədətov M. A. (2018), İnsan kapitalının ölçülməsinə dair yanaşmalarin analizi. [Analysis of approaches to measuring human capital]. İnformasiya cəmiyyəti problemləri. №2, 41–51. [in Azerbaijani].
  15. Putnam, Robert D. (1995), “Bowling Alone: America’s Declining Social Capital”. Journal of Democracy 6(l): 65-87.
  16. Putnam, Robert, Helliwel, John. (1995), “Economic Growth and Social Capital in Italy”. Eastern Economic Journal, Vol.21, No:23, Summer, pp.295-307.
  17. Stanley Fischer Rudiger Dornbusch, Richard Schmalensee. (1988), Economics.
  18. Süleyman Kevük. (2006), Bilgi ekonomisi. [Knowledge economy]. Journal of Yasar University, 1(4), s. 319-350. [in Turkish].
  19. Sullivan, P. H. (1998), Profiting from Intellectual Capital. New York: John Wiley & Sons.

Mirzayev N. COVID-19 pandemic and innovative agrarian economy

UDC 614.4COVID19:[330.341.1:338.432]

 

Mirzayev N.

 

The COVID – 19 pandemic has had and continues to have a profound effect on all areas of our lives. One of the main areas affected by the pandemic is agriculture. The article emphasizes the need to apply science-intensive technologies and expand innovative activities to ensure sustainable development of agriculture in the current pandemic. The importance of new generation technologies in accelerating the innovative development of the agricultural sector is also studied. Positive results have been obtained on issues that need to be solved when organizing and developing an economy based on an innovation system in the agricultural sector in a pandemic.

 Key words: agricultural sector, innovation, COVID-19 pandemic, entrepreneurship, digital transformation, economic activity.

References:

  1. Balayev Rəsul. (2021). Pandemiya və rəqəmsal transformasiyalar. [Pandemic and digital transformation]. ADİU-UNEC. “Elm günləri”. Bakı, 15-30 mart [in Azerbaijani]. URL: http://news.unec.edu.az/xeber/100-elm/7280-bold-red-unec-de-elm-gunleri-kechirilir-bold-red– Title from the screen.
  2. Mirzəyev N. S. (2017), Azərbaycanda taxılçılıq sahəsində sahibkarlıq subyektlərinin faəliyyət istiqamətləri. [Areas of activity of entrepreneurial entities in the field of grain growing in Azerbaijan]. Monoqrafiya. “Elm və təhsil” nəşriyyatı. Bakı [in Azerbaijani].
  3. Salahov S. V. (2004), Aqrar sahənin dövlət tənzimlənməsi problemləri. [Problems of state regulation of the agricultural sector]. Bakı, “Nurlan”, 504 s. [in Azerbaijani].
  4. Salahov S. V. (2010), Aqrar sahənin innovasiya yönümlü inkişafının konseptual əsasları. [Conceptual framework for innovative development of the agricultural sector]. “İnnovasiyalı kənd təsərrüfatı istehsalının formalaşdırılması problemləri”nə həsr edilmiş beynəlxalq elmi-praktik konfransın materialları. Bakı, Az.ETKTİ və Tİ, s. 8-18. [in Azerbaijani].
  5. Babayeva V. M. (2020), Aqrar sahənin innovasiyalı inkişafının prioritet istiqamətləri. [Priority areas of innovative development of the agricultural sector]. “Kənd təsərrüfatının iqtisadiyyatı” elmi-praktiki jurnal. № 4 (34). Bakı, [in Azerbaijani] URL: agroeconomics.az. – Title from the screen.
  6. Bernie Gracie. (2020), Digital transformation: 4 ways to plan a normal life after a pandemic. URL: https://enterprisersproject.com/article/2020/4/digital-transformation-how-plan-post-pandemic – Title from the screen.
  7. Online Nation/ (2020), [Èlektronnyj resurs]. URL: https://www.ofcom.org.uk/__data/assets/pdf_file/0027/196407/online-nation-2020-report.pdf – Title from the screen.
  8. The Measurement of Scientific, Technological and Innovation Activities Oslo Manual (2018) GUIDELINES FOR COLLECTING, REPORTING AND USING DATA ON INNOVATION. URL: http://www.stats.gov.cn/english/pdf/202010/pdf – Title from the screen.
  9. State Statistics Service of Azerbaijani URL: https://www.stat.gov.az. – Title from the screen.

Shlapak G., Agunova L., Azarova N. Vegetable components in technology production of meat products

UDC 621.824

 

Shlapak G., Agunova L., Azarova N. 

 

The article substantiates and experimentally proves the possibility of using couscous groats in the technology for the production of chopped semi-finished products. As a result of the study of the functional, technological and organoleptic indicators of model minced meat, it was found that it is rational to add no more than 9% of prepared couscous groats to the recipe for beef and pork meatballs. The quality indicators of semi-finished products comply with the requirements of the current regulatory documentation.

 Key words: couscous, chopped semi-finished products, functional and technological indicators, meatballs, organoleptic assessment.

References:

  1. Hayrapetyan, A. A., Manzhesov, V. I. & Churikova, S. Y. (2020). The development of technology for functional food products on based on combination of raw materials of vegetable and meat origin. IOP Conference Series: Earth and Environmental Science. – IOP Publishing. 422 (1), 012040. doi:10.1088/1755-1315/422/1/012040
  2. Naumova, N., Lukin, A. & Buchel, A. (2019). Effect of non-traditional raw material on quality and nutritional value of liver pate. Bulletin of the Transilvania University of Brasov. Forestry, Wood Industry, Agricultural Food Engineering. Series II. 12 (2), С. 85-96. doi:10.31926/but.fwiafe.2019.12.61.2.7
  3. Samchenko, O. N. & Merkucheva, M. A. (2016). Rublenye polufabrikaty s semenami maslichnyh kul’tur. Tehnika i tehnologija pishhevyh proizvodstv. 43 (4), 83-89.
  4. Bobreneva, I. V., Bajumi, A. A., Gabaraev, A. N., Degtjarev, Ju. G. & Denisenko, V. S. (2020). Mjasnye rublenye polufabrikaty so snizhennoj kalorijnost’ju. Mjasnaja industrija. 3, 34-38. doi: 10.37861/2618-8252-2020-3-34-37
  5. Subbotina, N. A. & Tkachenko, M. N. (2019). Vlijanie rastitel’nyh komponentov na kachestvo rublenogo polufabrikata. Nauchnoe obespechenie bezopasnosti i kachestva produkcii zhivotnovodstva: materialy konferencii, Kurgan, 23 maja 2019 g. / FGBOU VO «Kurganskaja gosudarstvennaja sel’skohozjajstvennaja akademija imeni T.S. Mal’ceva», Kurgan. 268-273.
  6. Merenkova, S. P. & Savostina, T. V. (2014). Prakticheskie aspekty ispol’zovanija rastitel’nyh belkovyh dobavok v tehnologii mjasnyh produktov. Vestnik Juzhno-Ural’skogo gosudarstvennogo universiteta. Serija: Pishhevye i biotehnologii. 2 (1), 23 – 29.
  7. Guber, N. B. & Topurija, G. M. (2013). Biotehnologicheskie priemy povyshenija proizvodstva govjadiny v sel’skom hozjajstve. Vestnik Juzhno-Ural’skogo gosudarstvennogo universiteta. Serija: Pishhevye i biotehnologii, 1 (2), 4-9.
  8. Ry`nok zamorozheny`x m’yasny`x i ry`bny`x napivfabry`kativ Ukrayiny` – oglyad. [Veb-sajt]. Ky`yiv, 2020. URL: https://pro-consulting.ua/ua/pressroom/rynok-zamorozhennyh-myasnyh-i-rybnyh-polufabrikatov-ukrainy-obzor (data zvernennya: 12.01.2021)
  9. Coskun, F. (2013). Production of couscous using the traditional method in Turkey and couscous in the world. African Journal of Agricultural Research, 8 (22), 2609-2615. doi: 10.5897/AJAR12.2195
  10. Yüksel, A. N., Oner, M. D. & Bayram, M. (2018). Rediscovery of couscous in the world. Glob. J. Med. Res. – Nutr. Food Sci., 18, 25-30.
  11. Hammami, R. & Sissons, M. (2020). Durum Wheat Products, Couscous. Igrejas, G, Ikeda, T. M & Guzmán, C. (Eds) Wheat Quality For Improving Processing And Human Health. (pp. 347 – 367). Springer, Cham. https://doi.org/10.1007/978-3-030-34163-3_15
  12. Debbouz, A., Dick, J. W. & Donnelly, B. J. (1994). Influence of raw material on couscous quality. Cereal foods world, 39 (4), 231-236.
  13. Cahier du CEPI N°23 Etude de positionnement stratégique de la branche “pâtes alimentaires et couscous”. République Tunisienne. Ministre de l’Industrie, de l’Energie et des Mines, 2003. URL: http://www.tunisieindustrie.nat.tn/fr/download/CEPI/IAA08.pdf (viewed on: 12.01.2021).
  14. V Najrobi zavershilas’ nedelja Vsemirnogo nematerial’nogo nasledija. [Veb-sajt] RU.UNESCO.ORG, 2010. URL: http://www.unesco.org/new/ru/culture/themes/dynamic-content-single-view/news/nairobi_close_of_a_weeks_celebration_of_intangible_cult/ (data obrashhenija: 12.01.2021)
  15. Matison, V. A., Arutjunova, N. I. & Gorjacheva, E. D. (2015). Primenenie deskriptorno-profil’nogo metoda dlja ocenki kachestva produktov pitanija. Pishhevaja promyshlennost’, 6, 52-54.

Popov A., Novikov О., Savenkov O., Sadovuy О., Kondrateva А. Influence the misalignment and bending of the rotary shaft on the force factors which appear in its toothed connections

UDC 621.824

 

Popov A., Novikov О., Savenkov O., Sadovuy О., Kondrateva А.

 

The analysis of the influence of the skew and deflection of the shaft, which rotates with high frequency, on the force factors for some gear joints is carried out. It has been established that the values of the dynamic factors do not exceed 1.05-1.15, and the dynamic components of these force factors can reach 30-50% of the values of the level of their static components.

 Key words: rotating shaft, deflection, gear coupling, transmission, axle misalignment, force factors.

References:

  1. Попов А.П. К вопросу исследования моментов от сил трения в зубчатых муфтах. Судовое энергомашиностроение: Тр. Николаев. судостроит. ин-та. Вып.109. С.3-9.
  2. Попов А.П. Зубчатые муфты в судовых агрегатах. Л.: Судостроение, 1985.  240с.
  3. Польченко В.В., Богуславский В.А., Каплюхин А.А. Влияние конструкции зубчатых муфт на нагрузку опор валов. Практика i перспективи розвитку iнструментального партнерства: Вiстн. ДонНГУ – ТРТУ. Донецьк: ДонДТУ, 2003. С.138-143
  4. Попов А.П. Контактная прочность зубчатых механизмов. Николаев: НУК, 2008. 580с.
  5. Попов А.П. Зубчатые механизмы с точечным контактом зубьев. Николаев: Атолл, 2010.  774с.
  6. Савенков О.И. Упругие изгибающие моменты в зубчатых муфтах с модифицированными зубьями. Збірник наукових праць: Миколаїв: НУК, 2011. №5 (440). С.61-
  7. Ханмамедов С.А. Экспериментальное определение изгибающих моментов при статическом нагружении зубчатых муфт. Вісник Національного технічного університету “ХПІ”: Збірник наукових праць. Тематичний випуск: Машинознавство та САПР. Харків: НТУ “ХПІ”. 2012. №22. С.175-
  8. Савенков О.И. Снижение дополнительных силовых факторов в зубчатых муфтах. Вісник Національного університету кораблебудування (загальний за 2011р.) – Миколаїв: НУК, 2012. С.278-
  9. Попов А.П., Мозговой М.Г., Савенков О.И. О влиянии прогиба вращающегося вала на силовые факторы, возникающие в зубчатых соединениях энергетических установок. Інновації в суднобудуванні та океанотехніці: Матеріали Міжнародної науково-технічної конференції. Миколаїв: НУК, 2013. С.175-177.
  10. Подгуренко В.С. Нагрузочная способность зубчатых муфт с учетом погрешностей изготовления зубьев. Вісник аграрної науки Причорномор’я. Вип. №1 (77). С.197-203.
  11. Попов А.П., Мозговой М.Г., Савенков О.И. Пути снижения влияния расцентровок осей судовых энергетических установок Інновації в суднобудуванні та океанотехніці: Матеріали V Міжнародної науково-технічної конференції. Миколаїв: НУК, 2014. С.237-
  12. Попов А.П., Савенков О.И. Влияние смещения осей соединяемых валов на показатели надежности СЭУ. Судова енергетика: стан та проблеми: Тези доповідей Міжнародної науково-технічної конференції. Миколаїв: НУК, 2015.  Ч.1.   С.235-
  13. Popov A. Savenkov O., Marchenko D., Savenkova A. Повышение работоспособности машинных агрегатов при перекосах осей соединяемых валов путём применения высокоэффективных зубчатых муфт. Commission of Motorization and Energetics in Agriculture.  Lublin-Rzesow (Poland).  2016. Vol.18. No2. 9-17.
  14. Попов А.П., Савенков О.И., Марченко Д.Д. Оценка перекосов осей соединяемых валов при использовании зубчатых муфт. Сучасні проблеми взаємозамінності та стандартизації у машинобудуванні: матеріали VІ Всеукраїнської науково-практичної конференції молодих учених і здобувачів вищої освіти, 12-13 квітня 2018 р., м. Миколаїв / Міністерство освіти і науки України; Миколаївський національний аграрний університет. Миколаїв: МНАУ, 2018. С.74-78.
  15. Попов А.П., Дубинский О.Ю., Савенков О.И., Рыбаков А.Б. Причины возникновения расцентровок осей соединяемых валов СЭУ и способы устранения их негативного влияния. Міжнародна науково-практична конференція, присвячена пам’яті професорів Фоміна Ю.Я. і Cеменова В.С. (FS-2019, 24–28 квітня 2019, Одеса – Стамбул – Одеса): матеріали / Одеський національний морський університет. Одеса, 2019. С.169-175.

Babenko D., Dotsenko N., Gorbenko O., Kim N. The influence of application of the preparation Albit on formation of seed productivity of supplemental potatoe material

UDC 631.361.8

 

Babenko D., Dotsenko N., Gorbenko O., Kim N.

 

A modified design of a seed separator was tested in various technological configurations based on the technological line of separation seeds of vegetable and melon crops: with a serial separator, with an experimental separator, complete with a MOS-300 machine. The comparative characteristics of such indicators as productivity, seed loss, the content of impurities in seeds, injury to seeds are given. The implementation of the melon seeds separation into technological line is substantiated.

 Key words: vegetable and melon crops, separator, technological line, seeds separation.

References:

  1. Myshanchuk T. Ovochevo-bashtanna produktsiia: problemy v haluzi. Ahrarnyi tyzhden. Ukraina. Rezhym dostupu: https://a7d.com.ua/plants/1656-ovochevo-bashtanna-produkciya-problemi-galuzi.html
  2. Sukhyi P.O., Zaiachuk M.D. Suchasnyi stan ta perspektyvy rozvytku ovochivnytstva v Ukraini. Uchenыe zapysky Krыmskoho federalnoho unyversyteta ymeny V. Y. Vernadskoho. Heohrafyia. Heolohyia. 2012. Vyp.1. S.113-117 Rezhym dostupu: https://cyberleninka.ru/article/n/suchasniy-stan-ta-perspektivi-rozvitku-ovochivnitstva-v-ukrayini
  3. Kazyev M.-R.A., Huseinov Yu. A. Orhanyzatsyia proyzvodstva semian ovoshchnыkh y bakhchevыkh kultur v respublyke Dahestan. Hornoe selskoe khoziaistvo. 2016. №3. S.143-146
  4. Temirov I., Ravshanov Kh., Fayzullaev Kh.,, Ubaydullaev Sh. Development of a machine for preparing the soil for sowing melons under the film. IOP Conference Series: Materials Science and Engineering. 2021. P.1030. doi: 10.1088/1757-899X/1030/1/012169.
  5. Arunabha Pal, Rahul Adhikary,  Tanmoy Shankar, Ajit Kumar, Sagar. Maitra. Cultivation of Cucumber in Greenhouse. 2020. doi: 10.30954/NDP-PCSA.2020.14.
  6. Lymar A. O., Lymar V.A. Bashtannytstvo Ukrainy: monohrafiia. 2-he vyd., pererob. ta dop. Mykolaiv: MDAU. 2012. 372 s.
  7. Shablia O. S. Metodychni pidkhody shchodo Vyznachennia konkurentospromozhnosti vitchyznianykh sortiv bashtannykh kultur. Tavriiskyi naukovyi visnyk. Kherson: Ailant. 2012. Vyp. 80. C. 156-161
  8. Rosaboev A., Yuldashev O., Toderich Kristina, Khaitov Botir, Imomkulov U., Pardaev O. Seed cleaning mashine for agricultural crops. IXTIROGA. Patent №IAP 06249. 04.03.2016
  9. Shebanin V. S., Atamaniuk I. P., Horbenko O. A., Dotsenko N. A. Vyznachennia optymalnykh parametriv mashyn dlia vydilennia nasinnievoi masy ovoche-bashtannykh kultur. Visnyk ahrarnoi nauky Prychornomoria. 2020. Vyp. 2. 95-103. DOI: 10.31521/2313-092X
  10. Shebanin V., Atamanyuk I., Gorbenko O., Kondratenko Y., Dotsenko, N. Mathematical modelling of the technology of processing the seed mass of vegetables and melons. Food Science and Technology. 2019. 13(3). R.118-126
  11. Babenko D.V., Horbenko O.A., Dotsenko N.A., Kim N.I. Doslidzhennia yakisnoho skladu podribnenoi masy nasinnykiv ovoche-bashtannykh kultur. Visnyk ahrarnoi nauky Prychornomoria. 2015. Vyp. 3 S.236-241
  12. Pastushenko S. I., Horbenko O.A., Ohiienko M.M. Laboratorno-eksperymentalni doslidzhennia protsesu vydilennia nasinnia dyni ta dorobky tekhnolohichnoi masy hidropnevmoseparatorom. Naukovyi visnyk Natsionalnoho ahrarnoho universytetu. K.: NAU. 2008. Vyp. 125. C. 349-355
  13. Babenko D.V., Horbenko O.A., Dotsenko N.A., Kim N.I. Doslidzhennia zasobiv mekhanizatsii otrymannia nasinnia ovoche-bashtannykh kultur. Visnyk ahrarnoi nauky Prychornomoria. 2016. Vyp. 4(92) S.137-142
  14. Babenko D. V., Horbenko O. A., Dotsenko N. A., Kim N. A. Optymizatsiia konstruktyvnykh i kinematychnykh parametriv separatora nasinnia ovochevykh ta bashtannykh kultur. Visnyk ahrarnoi nauky Prychornomoria. Vyp. 3 (107). 2020. C.105-112

Bilinska O., Kulka V., Samets N., Golod R. The influence of application of the preparation Albit on formation of seed productivity of supplemental potatoe material

UDC 631:633:49

 

Bilinska O., Kulka V., Samets N., Golod R.

 

The article presents the results of research on the influence of methods of application of the complex drug Albit on the formation of potato productivity in the process of reproduction of pre-seed seeds in the south-western part of the Forest-Steppe of Ukraine.

In the course of research, it was established that in order to achieve a high level of realization of biological potential of culture and product quality in cultivation of additional seed material of potatoes, it is advisible to conduct the procedure of processing of tubers at planting  Albite 100 ml / t and spraying twice in the phase of germination and budding of vegetative plants with the preparation at a dose of 50 ml / ha.

 Key words: potato,  crop, seed productivity, plant growth regulators, tuber fraction.

References:

  1. Vyshnevs’ka О.V., Dmytrenko V.P., Pikich О.P., Stolyarchuk L.V. Urozhaynist’ ta nasinnia produktyvnist’ ozdorovlenoho riznofraktsiinoho nasinnievoho materialu kartopli zalezhno vid rehuliatoriv rostu roslyn ta riznoi hustoty sadinnia kartopli. Kartopliarstvo, 2020. Vyp.45 S. 64-77.
  2. Bondarchuk A.A., Riazantsev V.B., Vermenko Yu.Ya. Otrymannia biotekhnolohichnymy metodamy dobazovoho nasinnievoho materialu. Kartopliarstvo, 2016. Vyp. 43 S. 3-35.
  3. Antsypovych N.A., Popkovych A.Y. Kachestvo semennoho kartofelia y eho produktyvnost pry yspolzovanyy byoorhanycheskykh preparatov «Prorastyn» y «Polystyn». Nauchnыe trudы RUP «Nauchno-praktycheskyi tsentr NAN Belarusy po kartofelevodstvu y plodoovoshchevodstvu», 2016., T. 24., S.340-346.
  4. Vildflush Y.R., Yonas E.L., Sortovaia otzыvchyvost novыkh sortov kartofelia nа prymenenye udobrenyi y rehuliatoram rosta v uslovyiakh severo-vostochnoi chasty Belarusy. Nauchnыe trudы RUP «Nauchno-praktycheskyi tsentr NAN Belarusy po kartofelevodstvu y plodoovoshchevodstvu», 2016. T. 24.,S.218-228
  5. Prohnoz fitosanitarnoho stanu ahrotsenoziv Ukrainy ta rekomendatsii shchodo zakhystu roslyn u 2018 rotsi / Za redaktsiieiu Stefkivskoho V. M., Orlovoi O. M. – K. 2018. – 229 s.
  6. Koltunov V.A., Danilkova T.V. Problemy vyrobnytstva ekologichno chistoi kartopli. Kartopliarstvo, 2019. Vyp. 44 S. 127-143.
  7. Taktaev B.A., Podberezko I.M., Lyashchenko S. A., Osipshuk A.A. Elementy systemy zachistu kartopli za vyroschuvannia na osnovi organichnogo zemlerobstva v umovach Polissia Ukrainy. Kartopliarstvo, 2020. Vyp. 45 S. 89-102.
  8. Kupriianova T. M., Vplyv strokiv sadinnia ta obrobky bulb I roslyn kartopli biologichnymy preparatamy na vrozhainist ta iakicni pokaznyky. Kartopliarstvo, 2014. Vyp. 42 S. 146-152.
  9. Kostianets M.I.Urozhainist ta nasinnieva produktyvnist ozdorovlenoho v kulturi merystem in vitro nasinnievoho materialu kartopli zalezhno vid zastosuvannia rehuliatoriv rostu roslyn ta skhem sadinnia. Kartopliarstvo Ukrainy, 2018. № 1-2. (44-45). S.32-38.
  10. Gavris’ І.L. Vpliv regulyatorіv rostu roslin na formuvannya vrozhayu pomіdora u zakritomu gruntі. Kiїv; Nacіonal’nij unіversitet bіoresursіv і prirodokoristuvannya Ukraїni, URL: http://www.sworld.com.ua/konfer46/96.pdf (stattya nadіslana: 11.03.2017 r).
  11. Kordulian U.V., Gunchak M.V., Solomiychuk M.P. Vplyv biopreparativ na pokaznyky urozhaunosti ta rentabelnosti kartopli. Kartopliarstvo, 2020. Vyp. 45 S. 89-102. Кордулян Ю.В., Гунчак М.В., Соломійчук М.П. Вплив біопрепаратів на показники урожайності
    та рентабельності картоплі. Картоплярство, 2019. Вип.44 С. 151-159.
  12. Melnyk A.T. Efektyvnist zastosuvannia biologichnyh zasobiv zachystu proty alternariozu na sortah kartopli. Kartopliarstvo, 2020. Vyp. 45 S. 118-127.
  13. Metodychni rekomendatsii shchodo provedennia doslidzhen z kartopleiu. Nemishaieve: Intas, 2002. S. 182.

Siabruk O., Naydenova O., Get’man Ya. Influence of biological products on СО₂ emission and microflora of the root zone of corn

UDC 631.433.5:631.51.01: 631.427

 

Siabruk O., Naydenova O., Get’man Ya.

 

The article presents the results of observations of carbon dioxide emissions and other indicators of soil biological activity in order to determine the effectiveness of the introduction of elements of biologization of agriculture. It was found that the use of a set of agricultural measures (tillage destructor tillage, pre-sowing treatment of seeds with biological product and double foliar treatment with humic preparation) increased СО₂ emissions and increased the number of microflora in the root zone of corn compared to control. There was a significant increase in the yield of corn grain due to the use of a complex of biological products (up to 16%, depending on the option).

 Key words: carbon dioxide emission, biologization of agriculture, agricultural activities, soil microflora, corn.

References:

  1. Berdnikov, A. (1992). Zelenoye udobreniye — biologizatsiya zemledeliya [Green fertilizer – biologization of agriculture]. Chernigov: Urozhay [in Russian].
  2. Kysil’, V. (2005). Ahrokhimichni aspekty ekolohizatsiyi zemle vyrobnytstva. [Agrochemical aspects of greening of land production]. Kharkiv [in Ukrainian].
  3. Rusakova, I. (2016). Vliyaniye mikrobnykh preparatov i mineral’nogo azota na razlozheniye solomy [Influence of microbial preparations and mineral nitrogen on straw decomposition] Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy – International Journal of Applied and Basic Research, No. 3 (1), 107-111 [in Russian].
  4. Skinner, C. (2014). Greenhouse gas fluxes from agricultural soils under organic and non-organic management – a global meta-analysis. Science of the Total Environment, 553-563.
  5. Siabruk, O., & Tsyhichko, A. (2016). Vplyv tradytsiynoyi ta orhanichnoyi systemy zemlerobstva na dynamiku emisiyi vuhlekysloho hazu ta fermentatyvnu aktyvnist’ chornozemu opidzolenoho [The influence of traditional and organic farming system on the dynamics of carbon dioxide emissions and enzymatic activity of podzolic chernozem]. Ahrokhimiya i gruntoznavstvo – Agrochemistry and Soil Science, № 85, 82-87 [in Ukrainian].
  6. Bezler, N., & Cherepukhina, I. (2013). Zapashka solomy yachmenya i produktivnost’ kul’tur v zernopropashnom sevooborote [Plowing of barley straw and crop productivity in grain-row crop rotation]. Zemledeliye – Agriculture, № 4, 11-13 [in Russian].
  7. Bogatyreva, Ye. (2013). Ispol’zovaniye solomorazlagayushchikh biopreparatov v zone neustoychivogo uvlazhneniya Stavropol’skogo kraya [The use of straw-decomposing biological products in the zone of unstable moisture in the Stavropol Territory]. Zemledeliye – Agriculture, № 8, 14-16 [in Russian].
  8. Rusakova, I., & Vorob’yev, N. (2011). Ispol’zovaniye biopreparata Barkon dlya inokulirovaniya solomy, primenyayemoy v kachestve udobreniya [Use of biological product Barkon for inoculating straw used as fertilizer]. Dostizheniya nauki i tekhniki APK – Achievements of science and technology of the agro-industrial complex, № 8, 25-28 [in Russian].
  9. Li, P., Zhang, D.D., Wang, X.J., & Cui, Z.J. (2012). Survival and performance of two cellulose- degrading microbial systems inoculated into wheat straw-amended soil. J. Microbiol. Biotechnol, Vol. 22, 126-132.
  10. Sergeyev, G., Kaverovich, V., & Kostenko, T. (2006). Vliyaniye preparata Baykal EM1 na skorost’ razlozheniya solomy [Effect of Baikal EM1 on the decomposition rate of straw]. Zemledeliye – Agriculture, № 4, 14-15 [in Russian].
  11. Omar, de Kok-Mercado (2015). Microbial decomposition of corn residue in two Iowa Mollisols. Graduate Theses and Dissertations. URL: http://lib.dr.iastate.edu/etd/14770.
  12. Biryukov, Ye. (2008). Vozmozhnost’ primeneniya biopreparata Trikhodermin v kachestve mikrobiologicheskogo udobreniya v usloviyakh Tambovskoy oblasti [Possibility of using the biological product Trichodermin as a microbiological fertilizer in the conditions of the Tambov region]. Voprosy sovremennoy nauki i praktiki – Questions of modern science and practice. № 1 (11), T. 1, 84-92 [in Russian].
  13. Magan, N., Hand, P., Kirkwood, I.A., & Lynch, J. (1989). Establishment of microbial inocula on decomposing wheat straw in soil of different water contents. Soil Biology and Biochemistry, Vol. 21, I. 1, 15-22.
  14. Schenck zu Schweinsberg-Mickan, M., & Müller, T. (2009). Impact of effective microorganisms and other biofertilizers on soil microbial characteristics, organic matter decomposition, and plant growth. Journal of Plant Nutrition and Soil Science, Vol. 172, I. 5, 704-712.
  15. Mayer, J., & Scheid, S. (2010). How effective are ‘Effective microorganisms (R) (EM)? Results from a field study in temperate climate. Applied Soil Ecology, V. 46(2), 230-239.
  16. Yakist’ gruntu. Metody vyznachannya orhanichnoyi rechovyny [Soil quality. Methods for determination of organic matter]: DSTU 4289:2004. [Valid from 2005–07–01]. K. : Derzhspozhyvstandart Ukrayiny, 2005. 14 [in Ukrainian].
  17. Yakist’ gruntu. Vyznachennya zahal’noho azotu v modyfikatsiyi NSC «Institute for Soil Science and Agrochemistry Research named after O.N. Sokolovsk» [Soil quality. Determination of total nitrogen in the modification NSC «Institute for Soil Science and Agrochemistry Research named after O.N. Sokolovsk»] : DSTU 4726:2007. [Valid from 2008–01–01]. K. : Derzhspozhyvstandart Ukrayiny, 2008. 14 [in Ukrainian].
  18. Grunty. Vyznachannya rukhomykh spoluk fosforu i kaliyu za modyfikovanym metodom Chyrykova [Soils. Determination of mobile compounds of phosphorus and potassium by the modified Chirikov method] : DSTU 4115-2002. [Valid from 2003-01-01]. K. : Derzhspozhyvstandart Ukrayiny, 2004. 10 [in Ukrainian].
  19. Siabruk, O., & Chechuy O. (2016). Metody vymiryuvan’ intensyvnosti emisiyi CO2 u systemi grunt-roslyna [Methods of measuring the intensity of CO2 emissions in the soil-plant system]. M. Miroshnychenka (Ed.). Kharkiv: NSC «Institute for Soil Science and Agrochemistry Research named after O.N. Sokolovsk» [in Ukrainian].
  20. Zvyagintsev, D., Aseyeva, I., Bab’yeva, I., & Mirchink, T. (1980). Metody pochvennoy mikrobiologii i biokhimii [Methods of soil microbiology and biochemistry]. D. Zvyagintsev (Red.). M.: Publishing house of Moscow University [in Russian].
  21. Tepper, Ye., Shil’nikova, V., & Pereverzeva, G. (1972). Praktikum po mikrobiologii [Workshop on Microbiology]. M.: Kolos [in Russian].
  22. Segi, Y. (1983). Metody pochvennoy mikrobiologii [Soil microbiology methods]. S. Muromtsev (Ed.), I. Kurennoy (Transl. from Hung.). M.: Kolos [in Russian].
  23. Yakist’ gruntu. Vyznachennya chysel’nosti mikroorhanizmiv u grunti metodom vysivannya na tverde (aharyzovane) zhyvyl’ne seredovyshche [Soil quality. Determination of the number of microorganisms in the soil by sowing on a solid (agar) nutrient medium]: DSTU 7847:2015 [Valid from 01.07. 2016], 2016. [in Ukrainian].
  24. Blanco-Canqui, H., & Lal, R. (2009). Crop Residue Removal Impacts on Soil Productivity and Environmental Quality. Critical Reviews in Plant Sciences, Vol. 28, I. 3. Special Issue: Carbon Sequestration, 139-163.
  25. Jensen, E. S., & Ambus, P. (2000). Prospects for manipulating crop residues to control nitrogen mineralisation-immobilisation in soil. K. Skogs-o. Lantbr.akad. Tidskr, Vol. 139, 25-42.
  26. Siabruk, O. (2015). Vplyv pryrodnykh ta antropohennykh chynnykiv na dynamiku emisiyi CO2 z chornozemiv v umovakh Livoberezhnoho Lisostepu Ukrayiny [Influence of natural and anthropogenic factors on the dynamics of CO2 emissions from chernozems in the conditions of the Left Bank Forest-Steppe of Ukraine]. Extended abstract of Candidate’s thesis. Kharkiv [in Ukrainian].

Dehtiarov Yu., Chekar O. Use of electrophysical indicators during growing strawberries on drop irrigation.

UDC 338.2

 

Dehtiarov Yu., Chekar O.

 

Three-year studies (2018-2020) have been carried out on the influence of different fertilizer systems under drip irrigation on the electrophysical parameters of typical chernozem during the cultivation of garden strawberries.

It has been established that the largest changes in electrophysical parameters (electrical conductivity, total mineralization, salinity) of typical chernozem occur from the ridge to a depth of 20-30 cm. There is a difference in the obtained values of electrophysical indicators between variants of fertilization of typical chernozem (control, mineral system, organo-mineral system, organic system), and also during years of researches is revealed.

 Key words: chernozem typical, electrophysical indicators, drip irrigation, fertilization.

References:

  1. Degtyar`ov V. V., Degtyar`ov Yu. V., Ryeznik S. V. (2020). Sezonna dy`namika elektroprovidnosti chornozemu ty`povogo za umov rizny`x sy`stem zemlerobstva [Seasonal dynamics of electrical conductivity of typical chernozem under different farming systems]. Visny`k Umans`kogo nacional`nogo universy`tetu sadivny`cztva. 1, 11–16. DOI: 10.31395/2310-0478-2020-1-11-16.
  2. Pasichny`k N. A., Loginova I. V., Kucheruk A. V. (2014). Funkcional`na diagnosty`ka yak metod prognozuvannya efekty`vnosti udobrennya kukurudzy` [Functional diagnostics as a method of predicting the effectiveness of corn fertilizer]. Naukovy`j visny`k Nacional`nogo universy`tetu bioresursiv pry`rodokory`stuvannya Ukrayiny`. Seriya: Agronomiya. 195 (1), 97–101.
  3. ViliamNagy, Gábor Milics, Norbert Smuk, Attila József Kovács, István Vlasta Štekauerová, Zo ltán Wilhelm, Kálmán Rajkai, Tamás Németh, Miklós Neményi (2013). Continuous fi eld soil moisture content mapping by means of apparent electrical conductivity (ECa) measurement. Journal of Hydrology and Hydromechanics, 61, 4, 305–312. DOI: 10.2478/johh-2013–0039.
  4. Dolzhy`kova Ya. N., Vasyukov O. Ye. (2013). Zminy` elektroprovidnosti g`runtovogo rozchy`nu yak naslidok fazovy`x perexodiv rechovy`n [Changes in the electrical conductivity of the soil solution as a consequence of phase transitions of substances]. Materialy` IX Vseukrayins`ky`x naukovy`x Taliyivs`ky`x chy`tan`. 54–56.
  5. Shkaruba A. M. (1982). Opredeleny`e dy`namy`ky` solej v solonczax po эlektroprovodnosty` [Determination of the dynamics of salts in solonetzes by electrical conductivity]. Pochvovedeny`e. 66–75.
  6. Aimrun W, MSM Amin, M Rusnam and other. Soil Electrical Conductivity as an Estimator of Nutrients in the Maize Cultivated Land. European Journal of Scientific Research. 2009. 31 (1), 37–
  7. Asfaw Bekele, Wayne H. Hudnall, Jerry J. (2005). Daigle and other. Scale dependent variability of soil electrical conductivity by indirect measures of soil properties. Journal of Terramechanics. 42(3-4), 339– DOI: 10.1016/j.jterra.2004.12.004.
  8. Rysan L., Sarec O. (2008). Research of correlation between electric soil conductivity and yield based on the use of GPS technology. AGR. ENG. 54(3), 136–147. DOI: 10.17221/714-rae.
  9. Svitovy`j V. M., Gerkiyal O. M. (2012). Vply`v rizny`x sy`stem udobrennya v pol`ovij sivozmini na elektroprovidnist` g`runtu [Influence of different fertilizer systems in field crop rotation on soil electrical conductivity]. Zbirny`k naukovy`x pracz` Umans`kogo NUS. Uman`. 79 (1),
  10. Seifi M.R., Alimardani R. and Sharifi A. (2010). How Can Soil Electrical Conductivity Measurements Control Soil Pollution? Research Journal of Environmental and Earth Sciences. 2(4), 235–
  11. Hao X., Chang C. (2003). Does long-term heavy cattle manure application increase salinity of a clay loam soil in semi-arid southern Alberta. Agric. Ecosyst. Environ. 04, 89–103. DOI: 10.1016/s0167-8809(02)00008-7.
  12. Tom Doerge (2001). Fitting soil elektrikal conductivity measurements intu the precision farming toolbox. Presented at the 2001 Wisconsin Fertilizer, Aglime and Pest Management Conference. 16–
  13. Bedernichek T. Yu., Kopij S. L., Party`ka T. V., Gamkalo Z. G. (2009). Elektroprovidnist`, yak ekspres-indy`kator jonnoyi akty`vnosti edafotopu lisovy`x ekosy`stem [Electrical conductivity as an express indicator of ionic activity of edaphotope of forest ecosystems]. Biologichni sy`stemy`. 1 (1), 85–89.
  14. Gamkayu Z. G. (2000). Elektroprovidnist` yak kry`terij ocinky` jonnoyi akty`vnosti g`runtu pasovy`shh pry` riznomu mineral`nomu udobrenni travostaniv [Electrical conductivity as a criterion for assessing the ionic activity of pasture soil with different mineral fertilizers]. Visny`k L`vivs`kogo nacional`nogo universy`tetu im. Ivana Franka. 27, 147 151.
  15. Gamkayu Z. G., Bedernichek T. Yu., Party`ka T. V., Partem Yu. P. (2012). Py`toma elektroprovidnist` vodny`x suspenzij g`runtu yak ekspres-kry`terij g`runtovoyi diagnosty`ky` [Specific electrical conductivity of aqueous soil suspensions as an express criterion for soil diagnostics]. Biologichni sy`stemy`. 4 (1), 16–19.
  16. Svitovy`j V. M. (2002). Vply`v try`valogo udobrennya na agroximichni vlasty`vosti, biologichnu akty`vnist` chornozemu opidzolenogo ta produkty`vnist` kul`tur pol`ovoyi sivozminy`: dy`s. kandy`data s.-g. nauk: 06.01.04. 191.

Ie. Skrylnyk, V. Hetmanenko, А. Kutova, V. Moskalenko. Potential resources of organic raw materials in Ukraine and the approaches to their management for increasing soil organic carbon stocks

UDC 631.86:631.895:631.879

 

Skrylnyk Ie., Hetmanenko V., Kutova А., Moskalenko V.

 

The available resources of organic raw materials for replenishment of organic carbon in soils in various soil and climatic zones of Ukraine have been analyzed. The approximate supply of organic fertilizers to the regions of Ukraine has been calculated, based on various scenarios. The characteristics of potential resources of organic raw materials of natural origin and organic waste from the standpoint of humus formation are given. Approaches to the management of organic materials are proposed to improve the efficiency of humus accumulation in soils.

 Key words: organic raw materials, humus, zonal sufficiency, approaches to resource management.

References:

  1. Vpliv sistem udobrennya na organi`chnu rechovinu ta agrokhi`mi`chni` pokazniki chornozemu tipovogo / Ye.V. Skril`nik ta i`n. Agrokhi`mi`ya i` g`runtoznavstvo. № 88 S. 74-78. DOI: https://doi.org/10.31073/acss88-10.
  2. Degtyar`ov V.V. Gumus chornozemi`v Li`sostepu i` Stepu Ukrayini: monografi`ya. Kharki`v: Majdan, 2011. 359 s.
  3. Kogut B.M., Semenov V.M. Oczenka nasy`shhennosti pochvy` organicheskim uglerodom. Byulleten` Pochvennogo instituta imeni V.V. Dokuchaeva. Vy`p. 102. S. 103-124. DOI: 10.19047/0136-1694-2020-102-103-124
  4. Kononova M. M. Proczessy` prevrashheniya organicheskogo veshhestva i ikh svyaz` s plodorodiem pochvy`. 1968. № 8. S. 17 – 27.
  5. Kravchenko Yu.S. Vi`dtvorennya rodyuchosti` chornozemi`v Ukrayini za g`runtozakhisnogo zemlerobstva. Agrobi`ologi`ya. № 1. S. 67-75. doi: 10.33245/2310-9270-2020-157-1-67-79.
  6. Kudeyarov V.N. Sovremennoe sostoyanie uglerodnogo balansa i predel`naya sposobnost` pochv k pogloshheniyu ugleroda na territorii Rossii. 2015. № 9. S. 1049-1060.
  7. Li`tvi`nov V. Korotkorotaczi`jni` si`vozmi`ni u suchasnikh sistemakh zemlerobstva. Posi`bnik ukrayins`kogo khli`boroba. 2016. Tom 1. S. 218-221.
  8. Orlov D.S. Khimiya pochv. Moskva: MGU, 1985. 376 s.
  9. Semenov V.M., Kogut B.M. Pochvennoe organicheskoe veshhestvo. Moskva: GEOS, 2015. 233 s.
  10. Semenov V.M., Tulina A.S. Sravnitel`naya kharakteristika mineralizuemogo pula organicheskogo veshhestva v pochvakh prirodny`kh i sel`skokhozyajstvenny`kh e`kosistem. Agrokhimiya. 2011. № S. 53-63.
  11. Skril`nik Ye.V., Getmanenko V.A., Kutova A.M. Si`l`s`kogospodars`ki` vi`dkhodi yak resurs dlya vi`dnovlennya vugleczevogo balansu v g`runtakh Ukrayini. Povodzhennya z vi`dkhodami v Ukrayini`: zakonodavstvo, ekonomi`ka, tekhnologi`yi: zbi`rka materi`ali`v Naczi`onal`nogo forumu 22-23 list. 2018 r. Kiyiv: Czentr ekologi`chnoyi osvi`ti ta i`nformaczi`yi, 2018. S. 79-80.
  12. Tarasov S.I., Kovalev D.A., Karaeva Yu.V. Primenenie e`fflyuenta biogazovoj ustanovki v kachestve udobreniya dlya organicheskogo zemledeliya. Vestnik Ul`yanovskoj gosudarstvennoj sel`skokhozyajstvennoj akademii. № 1. S. 91-97.
  13. Shkvi`rko O.M., Timchuk I`.S., Mal`ovanij M.S. Adaptaczi`ya svi`tovogo dosvi`du utili`zaczi`yi osadi`v sti`chnikh vod do ekologi`chnikh umov Ukrayini. Naukovij vi`snik NLTU Ukrayini. 2019, t. 29. № 2. S. 82-87. doi: https://doi.org/10.15421/40290216
  14. E`kologicheskie i fitosanitarny`e funkczii pochvennogo organicheskogo veshhestva (problemno-analiticheskij obzor) / M.S. Sokolov i dr. Agrokhimiya. 2018. № 5. S. 79–96.
  15. Biala J. The benefits of using compost for mitigating climate change. Department of Environment, Climate Change and Water NSW (New South Wales). Sydney South, Australia. 2011.
  16. Brassard , Godbout S., Lévesque V. Biochar for soil amendment. Char and Carbon Materials Derived from Biomass. 2019. Р. 109-146. DOI: https://doi.org/10.1016/B978-0-12-814893-8.00004-3.
  17. Changes in labile fractions of soil organic matter during the conversion to organic farming / Abdelrahman et al. Journal of Soil Science and Plant Nutrition. 2020. Vol. 20. P. 1019-1028. DOI:https://doi.org/10.1007/s42729-020-00189-y
  18. Does organic farming accumulate carbon in deeper soil profiles in the long term? / Blanco-Canqui et al. Geoderma. 2017. Vol. 288. P. 213-221. DOI:https://doi.org/10.1016/j.geoderma.2016.10.031
  19. FAO and ITPS. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy. URL: http://www.fao.org/documents/card.
  20. Global soil organic carbon removal by water erosion under climate change and land use change during AD 1850-2005 / V. Naipal et. al. 2018. Vol. 15. Р.4459-4480.
  21. Kell D.B. Breeding crop plants with deep roots: their role in sustainable C, nutrient and water sequestration. Annals of Botany. №108. P. 407-418.
  22. Lal R. Managing Soils and Ecosystems for Mitigating Anthropogenic
    Carbon Emissions and Advancing Global Food Security. Bio Science.Vol. 60. P. 708-721. DOI: 10.1525/bio.2010.60.9.8.
  23. Lorenz K., Lal R. Importance of Soils of Agroecosystems for Climate Change Policy. Carbon Sequestration in Agricultural Ecosystems. 2018. P. 357-386.
  24. Management option for reducing СО2 emissions from agricultural soils. /
    Paustian et al. Biogeochemistry. 2000. Vol. 48. P. 147-163.
  25. Seadi Т.Al., Lukehurst C.T. Quality management of digestate from biogas plants used as fertilizer. IEA Bioenergy. 2012. 3. P.38-42.
  26. Seiple T.E., Coleman A.M., Skaggs R.L. Municipal wastewater sludge as a sustainable bioresource in the United States. Journal of Environmental Management. 2017. Vol. 197. P. 673-680. DOI: https://doi.org/10.1016/j.jenvman.2017.04.032.
  27. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. / J. Li et al. Soil and Tillage Research. Vol. 175. P. 281-290. DOI:https://doi.org/10.1016/j.still.2017.08.008
  28. Unlocking the Potential of Soil Organic Carbon – Outcome Document of the Global Symposium on Soil Organic Carbon, 21-23 March Rome: FAO, 2017. P. 36. http://www.fao.org/3/i7268e/i7268e.pdf
  29. Woolf , Solomon D, Lehmann J. Land restoration in food security programmes: synergies with climate change mitigation. Climate Policy. 2018. P. 1260-1270. DOI: https://doi.org/10.1080/14693062.2018.1427537
  30. Xiao C. Soil Organic Carbon Storage (Sequestration) Principles and Management. Potential Role for Recycled Organic Materials in Agricultural Soils of Washington State. Waste 2 Resources Program Washington State Department of Ecology Olympia, Washington, 2015. 90 р.